It is well-known in the literature that the general term of a sequence can be represented by a linear combination of binomial coefficients. The theorem and its known proofs are not easy for highschool students to understand. In this paper we prove the theorem by a pictorial method and by a very short and easy inductive method to make the problem easy and accessible enough for highschool students.
본 고에서는 평면이나 공간에서 정의된 도형수가 일반적으로 유한 차원에서 일반화될 때 저차원의 도형수인 그노몬수, 다각수 그리고 다각뿔수의 성질을 통합적으로 설명할 수 있음을 논하고, 도형수와 파스칼 삼각형, 피보나치 수열의 성질과 그들 사이의 관계를 알아봄으로써 이들에 대한 성질 탐구가 수학적 추론과 연결성을 지도하기 적합한 소재가 될 수 있음을 논한다.
본 논문에서는 형식불역의 원리를 적용하여 4차원 이상의 고차원 도형 중 특별한 몇 가지 도형의 기하학적 모델을 탐구해 보면서 이것이 기존의 일반적인 수학적 성질과 원리, 법칙에 모순됨이 없는지를 검증해 보았다. 정다면체는 5개뿐이라는 설명 방식에 형식불역의 원리를 적용하면 4차원 정다포체는 6개뿐임을 설명할 수 있다. 그리고 두 가지 정의(기둥형과 뿔형)에 의해 만들어진 볼록한 고차원 도형들은 다면체에서의 오일러 정리를 일반화한 오일러 특성수에 정확히 들어맞는다는 것을 확인할 수 있다. 특히, 뿔형의 경우는 그 도형의 꼭지점, 모서리, 면, 입체 등의 개수들이 파스칼의 삼각형 구조를 이루고 있으며 기둥형의 경우는 임의로 정한 수의 모든 약수들을 하세의 다이어그램을 통해 약수와 배수의 관계로 표현할 수 있다. 이러한 소재들은 영재 교수학습용 자료로도 활용할 수 있을 것이다.
최근 4차 산업 혁명이 사회적으로 대두되면서 IoT 관련 제품에 대한 사용자들의 관심이 증가하고 있다. IoT 장치에 사용되고 있는 센서의 종류와 기능은 점점 다양화되고 있어 IoT 장치의 상호 인증 기술이 요구되고 있다. 본 논문에서는 서로 다른 종류의 IoT 장치들이 서로 상호 연계하여 원활하게 동작될 수 있도록 파스칼 삼각형 이론을 이용한 효율적인 이중 서명 인증 키 설립 기법을 제안한다. 제안 기법은 IoT 장치간 인증 경로를 2개(주경로와 보조 경로)로 구분하여 IoT 장치의 인증 및 무결성을 보장한다. 또한, 제안 기법은 IoT 장치를 인증할 때 추가적인 암호 알고리즘이 필요하지 않도록 키를 생성하기 때문에 적은 용량을 필요로 하는 IoT 장치에 적합하다. 성능 평가 결과, 제안 기법은 IoT 장치의 지연시간을 기존 기법보다 6.9% 향상되었고, 오버헤드는 기존 기법보다 11.1% 낮은 결과를 얻었다. IoT 장치의 인증 처리율은 기존 기법보다 평균 12.5% 향상되었다.
In this study, we design a teaching unit that constructs Pascal graphs and extended Pascal triangles to explore number patterns inherent in them. This teaching unit is designed to consider the diachronic process of teaching-learning by combining Dörfler's theoretical generalization model with Wittmann's design science ideas, which are applied to the didactical practice of mathematization. In the teaching unit, considering the teaching-learning level of prospective teachers who studied discrete mathematics, we generalize the well-known Pascal triangle and its number patterns to extended Pascal triangles which have directed graphs(called Pascal graphs) as geometric models. In this process, the use of symbols and the introduction of variables are exhibited as important means of generalization. It provides practical experiences of mathematization to prospective teachers by going through various steps of the generalization process targeting symbols. This study reflects Wittmann's intention in that well-understood mathematics and the context of the first type of empirical research as structure-genetic didactical analysis are considered in the design of the learning environment.
본 연구에서는 유명한 피보나치 수열을 일반화하는 g-피보나치 수열 $\{g_n\}$={a, b, a+b, a+2b, 2a+3b, 3a+5b,...}의 여러 가지 성질과 특성을 조사한다. 특히, g-피보나치 수열의 합에 관한 항등식과 제 n항 $g_n$(비네의 공식의 일반화)을 구체적으로 구한다. 또한 피보나치 수열에 관한 카타란의 항등식의 일반화된 항등식과 A. Tagiuri의 항등식을 구하고 $g_n$과 파스칼 삼각형과의 관계식과 g-피보나치 수 $g_n$이 얼마나 빨리 커지는가를 조사한다. 아울러 g-피보나치 수열의 초항과 둘째 항이 서로 소일 때 연속하는 두 항은 서로 소이며, 연속하는 두 항의 비율 $\{\frac{g_{n+1}}{g_n}\}$은 황금비 $\frac{1+\sqrt5}2$ 수렴함을 밝히고자한다.
이 연구는 경기과학고등학교 1학년 학생 5명을 대상으로 사사연구를 진행하면서 학생들이 탐구한 수학적인 내용에 대한 분석과 그 결과가 나오기까지 멘토링을 하는 지도교수의 역할을 설명하고 있다. 학생들이 탐구한 수학적인 내용은 4차원 도형의 모양과 그 도형들에 나타나는 수학적인 성질이다. 지도교수는 연구에 익숙하지 않은 학생들을 위하여 수학자 피코크가 제안했던 '형식불역의 원리'를 모델로 삼도록 했고, 지도교수는 학생들의 창조적인 산출물 생산을 격려하기 위해 수학교육학자 프로이덴탈의 '안내된 재발명의 방법'을 사용하였다. 학생들은 지도교수의 안내에 의한 (재)발명의 원리에 따라 기존에 이미 알고 있던 수학적 성질을 고차원 도형에 적용시키면서 확장, 일반화시켜나갔는데, 여기에는 '형식불역의 원리'라는 틀이 매우 유용하게 작용하였다. 지도교사는 학생들에게 3차원 도형을 2차원에 표현하는 겨냥도, 전개도, 평면그래프를 응용하여 4차원을 3차원과 2차원에 표현하는 방식을 탐구하도록 하였다. 이 과정에서 학생들은 이미 알려진 파스칼의 삼각형과 이항정리, 오일러 정리, 하세의 다이어그램 등을 4차원 이상의 도형을 탐구할 때에도 적용할 수 있음을 확인하였다. 그리고 몇 가지의 추측과 후속 연구 과제를 제안하였다. 학생들의 산출물들은 형식불역의 원리와 안내된 재발명의 방법의 결과물인 것이다. 이 연구는 사사연구의 과정에 도움이 될 수 있는 3가지의 제안과 그 실 예를 담고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.