• Title/Summary/Keyword: 파랑에너지

Search Result 365, Processing Time 0.027 seconds

Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction (파랑-흐름의 상호작용에 의한 파랑변형 메커니즘 분석)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.645-650
    • /
    • 2016
  • In this study, we conducted a numerical simulation using Navier-Stokes Solver (HYMO-WASS-3D) in order to analyze wave attenuation under wave-current interaction found in existing hydraulic experiments. It showed that wave energy and wave height are reduced as the wave propagates in coexisting fields between waves and currents. And the wave attenuation became more serious as the velocity of current and thus turbulence intensity were increased at wave-current coexisting field. As well, the wave attenuation became more serious with lower wave height and shorter period when the wave propagates the same distance under interactions between waves and currents.

SWAN을 이용한 파랑-바람 공존장에서의 파랑 특성에 관한 연구

  • Jeong, Jae-Hun;Lee, Seung-Geon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.127-128
    • /
    • 2007
  • 파랑이 외해로부터 연안으로 내습하면서 발생되는 파랑 변형, 즉, 굴절, 회절, 천수 그리고 쇄파 동에 의한 변형을 일으킨다. 이러한 파랑변형을 일으키는 주된 물리적 인자는 수심의 변화이지만 태풍과 같은 강한 바람이 부는 해역에서는 바람인자를 반드시 고려해야만 한다. 본 연구에서는 바람효과가 고려된, 에너지 스펙트럼 모형 (SWAN; Simulating WAve Nearshore) 을 이용한 수치실험을 수행하였다. 그리고 해석해 및 Karlsson 모형에 대한 수치 해와 비교를 통해 모델의 검증을 실시하였다. 또한 부산항 설 해역을 대상으로 태풍 매미 내습 시 입사 파랑 조건을 적용하였으며 실제 관측 치와 바람효과의 유무에 따른 수치 계산치를 비교한 결과, 바람효과를 고려한 계산결과가 실제 관측치와의 양호한 일치를 나타내었다.

  • PDF

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

Experimental Study for Wave Energy Convertor using Floating Light Buoy (등부표를 이용한 파력발전에 관한 실험적 연구)

  • Oh, Nam Sun;Jeong, Shin Taek;Ko, Dong Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • In this paper, wave energy convertors which convert incident wave energy into electric power using floating light buoy are investigated. One-tenth models of a floating light buoy, straight line and seesaw type electric power plant are manufactured and tested in wave flume. In these systems, we measure the horizontal and vertical slope, generated current and power of buoy with different wave heights and periods. This was confirmed the capability of getting electric power, then we suggest further works to get more efficiency.

Characteristics of Incident Waves on Seaweed Farm Field Around Gumil-up Sea, Wando (완도 금일읍 주변해역 해조류 양식장에 내습하는 해양파랑 특성)

  • Jeon, Yong-Ho;Yoon, Han-Sam;Kim, Dong-Hwan;Kim, Heon-Tae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.177-185
    • /
    • 2012
  • Wave field measurements were made over a period of 18 days to study the spatial distribution of incident wave on seaweed tarm field around Gumil-up Sea, Wando, Korea. These measured data were compared with data from the Geomun-do ocean weather/wave observation buoy. A numerical simulation model that combined the offshore design wave with the seasonal normal incoming wave was used to study the incident wave distribution surrounding a seaweed farm. The results are summarized as follows. (1) On-site wave measurements showed that the major relationship between maximum and significant wave height was $H_{max}=1.6H_{1/3}$. (2) Offshore incident wave energy reaching the coast was greatly influenced by the wind direction. A north wind reduced the incident wave energy and a south wind increased it. (3) The calculated maximum wave height under the design wave boundany conditions was in the range of 4~5 m and the reduction in the incident wave height ratio ranged from approximately 38.1% to 47.6% at Gumil-up Sea. Under normal wave conditions, the maximum wave heights were 3.6~4.0 m in summer and 2.3~2.7 m in winter while the reduction in the incident wave height ratio was about 41.8% to 49.1%. (4) The sea state in the southern area of Gumil-up was the most affected by ocean waves, whereas the sea state in the northern area was very stable. The significant wave ratio in the south was about six times that in the north.

The Characteristics of Wave Energy Variations by Impermeable Submerged Breakwater Using VOF Method in Irregular Wave Fields (VOF 법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지 변형특성)

  • 허동수;김도삼
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.207-213
    • /
    • 2003
  • This study is to numerically investigate the characteristics of wave energy variations propagating over impermeable submerged breakwaters with irregular waves. Two-dimensional numerical wave flume based on the VOF method was used. VOF method is the most efficient capable of simulating free surfaces including wave breaking. From the computed frequency spectrum results, wave breaking play important role in ability of the submerged breakwaters to dissipate incident wave energy. In case of occurring wave breaking, our analysis shows that wave energy moves to short wave period on one-row impermeable submerged breakwater's lee side and is widely distributed not having peak period on two- row impermeable submerged breakwater's lee side.

Investigation of Importance of Evanescent Modes in Predicting the Transformation of Water Waves by the Linear Wave Theory: 2. Numerical Experiments (선형파 이론에 의한 파랑변형 예측시 소멸파 성분의 중요성 검토 2. 수치 실험)

  • 이창훈;조대희;조용식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2003
  • The magnitude of evanescent modes in terms of dynamics it investigated in case that the transformation of water waves is predicted by the linear wave theory. For the waves propagating over two steps, the eigenfunction expansion method is used to predict the amplitudes of reflected and transmitted waves by the component of evanescent modes as well as propagating modes. Then. the relative importance of evanescent modes to the propagating modes is investigated. The numerical experiments find that the evanescent modes are pronounced at the relative water depth of k$_1$h$_1$=0.11$\pi$ and the water depth ratio of h$_2$/h$_1$ close to zero.

A hybrid boundary integral equation model applied for the calculation of normal incident waves (혼합경계적분 요소법을 사용한 직교입사파랑의 반사율계산 모델)

  • 서승남;김상익
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1991.07a
    • /
    • pp.30-35
    • /
    • 1991
  • 해저가 완만하게 변하는 해역 위를 지나는 파랑의 반사는 무시할 수 있으며 이에 대한 파랑계산 방법으로는 굴절 모델 (서 등, 1989)과 포물형 근사식 모델(서, 1990b)을 들 수 있다. 그러나 해저의 변화가 심해 상당량의 파랑에너지가 반사되는 경우에는 파랑 운동을 지배하는 원시 방정식인 Laplace을 사용하여야 한다.(중략)

  • PDF

파력 발전용 횡류형 수력터빈의 개발

  • Kim, Chang-Gu;Choe, Yeong-Do;Kim, Yu-Taek;Lee, Yeong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.360-362
    • /
    • 2007
  • 해양에너지는 자원량이 무한하고 무공해이기 때문에 미래의 중요한 대체에너지의 하나로 그 역할이 기대되고 있다. 세계적으로 파력, 조력, 해류, 해상풍력 등의 신재생에너지 이용 방안이 지속적으로 연구개발 되고 있다. 이중 파력은 모든 해역에 폭넓게 분포하므로 가용 에너지원이 풍부하고 설치 해역 또한 광범위하여 우리나라의 연안 해역에 대규모로 활용이 가능하다. 본 연구는 이와같은 파랑에너지를 이용하여 전기로 변환하는 파력 발전용 횡류형터빈의 개발을 하고자 한다.

  • PDF