DOI QR코드

DOI QR Code

Characteristics of Incident Waves on Seaweed Farm Field Around Gumil-up Sea, Wando

완도 금일읍 주변해역 해조류 양식장에 내습하는 해양파랑 특성

  • Jeon, Yong-Ho (Research Center for Ocean Industrial Development, Pukyong National Univ.) ;
  • Yoon, Han-Sam (Research Center for Ocean Industrial Development, Pukyong National Univ.) ;
  • Kim, Dong-Hwan (Department of Ocean Engineering, Pukyong National Univ.) ;
  • Kim, Heon-Tae (Department of Ocean Engineering, Pukyong National Univ.)
  • 전용호 (부경대학교 해양산업개발연구소) ;
  • 윤한삼 (부경대학교 해양산업개발연구소) ;
  • 김동환 (부경대학교 해양공학과) ;
  • 김헌태 (부경대학교 해양공학과)
  • Received : 2011.10.17
  • Accepted : 2012.07.10
  • Published : 2012.08.25

Abstract

Wave field measurements were made over a period of 18 days to study the spatial distribution of incident wave on seaweed tarm field around Gumil-up Sea, Wando, Korea. These measured data were compared with data from the Geomun-do ocean weather/wave observation buoy. A numerical simulation model that combined the offshore design wave with the seasonal normal incoming wave was used to study the incident wave distribution surrounding a seaweed farm. The results are summarized as follows. (1) On-site wave measurements showed that the major relationship between maximum and significant wave height was $H_{max}=1.6H_{1/3}$. (2) Offshore incident wave energy reaching the coast was greatly influenced by the wind direction. A north wind reduced the incident wave energy and a south wind increased it. (3) The calculated maximum wave height under the design wave boundany conditions was in the range of 4~5 m and the reduction in the incident wave height ratio ranged from approximately 38.1% to 47.6% at Gumil-up Sea. Under normal wave conditions, the maximum wave heights were 3.6~4.0 m in summer and 2.3~2.7 m in winter while the reduction in the incident wave height ratio was about 41.8% to 49.1%. (4) The sea state in the southern area of Gumil-up was the most affected by ocean waves, whereas the sea state in the northern area was very stable. The significant wave ratio in the south was about six times that in the north.

본 논문은 완도 금일읍 주변 해역의 내습 파랑 공간분포를 살펴보기 위해 18일간 현장 파랑관측을 실시하고 이를 외해 거문도 해양관측부이 자료와 비교하였으며, 수치모의를 통해 심해 설계파 및 계절별 평상 파랑 내습에 따른 양식장 주변의 입사파고 분포를 고찰하였다. 이를 통해 얻어진 결과를 요약하면 다음과 같다. (1) 현장 파랑관측을 실시한 결과, 최대파고와 유의파고의 관계식 $H_{max}=1.6H_{1/3}$에 근접하는 파랑이 다수를 나타내었다. (2) 외해 입사 파랑에너지가 연안까지 도달함에 있어서 바람의 방향에 따라서 크게 영향을 받고 있으며, N계열의 풍향은 입사 파랑에너지의 감소에, S계열 풍향은 입사파랑에너지 전달에 영향을 주고 있음을 알 수 있었다. (3) 금일읍(평길도와 생길도) 전면해역에서 최대 심해설계파고가 4~5 m이며 파고감소율은 약 38.1~47.6%, 평상파랑의 경우 하계 3.6~4.0 m, 동계 2.3~2.7 m로 나타나 파고감소율은 41.8~49.1%에 해당하였다. (4) 평길도와 생길도 남측의 경우 해양파랑의 영향이 가장 크고, 섬의 북측 청도 수도 해역이 가장 정온한 상태를 나타내었으며, 두 해역간 유의파고비는 약 6배의 차이를 나타내었다.

Keywords

References

  1. 기상청, 2011, http://www.kma.go.kr.
  2. 류황진, 김도영, 2004, "홍도 해역에서 태풍 중 극한파의 통계적 특성에 관한 연구", 한국해양환경공학회지, 7(1), 47- 55.
  3. 박 순, 윤한삼, 박효봉, 류승우, 류청로, 2009, "SWAN 모델을 이용한 낙동강 하구역의 입사파향별 파랑분포 특성", 한국해양환경공학회지, 12(3), 188-196.
  4. 손병규, 류청로, 2001, "주전해역의 파랑의 통계적 변동 특성", 한국해양공학회지, 15(3), 20-27.
  5. 송무석, 김도영, 김 민, 홍기용, 전기천, 2004, "정기 수치모사 파랑자료를 바탕으로 한 한국해역의 파랑에너지밀도 분석", 한국해양환경공학회지, 7(3), 152-157.
  6. 완도군청, 2011, http://www.wando.go.kr.
  7. 유승협, 박종숙, 2010, "지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구", 한국해양공학회지, 24(6), 7-15.
  8. 유창일, 박정현, 김헌태, 윤한삼, 윤상준, 2009, "파력발전적지 기장 해역과 동해 해상부이 파랑관측치 비교", 한국마린엔지니어링학회지, 33(1), 166-174.
  9. 이경선, 김정태, 류청로, 2007, "태풍의 풍향특성을 고려한 천해파 산정에 관한 연구", 한국해양공학회지, 21(1), 1-6.
  10. 조은섭, 김상수, 정희동, 김숙양, 이상용, 2009, "전남서부해역의 수질환경 특성", 해양환경안전학회지, 15(3), 187-203.
  11. 한국해양연구원(KORDI), 2005, 전해역 심해설계파 추정보고서 II.
  12. 홍기용, 류황진, 신승호, 홍석원, 2004, "파력발전 적지 선정을 위한 제주 해역 파랑에너지 분포특성 연구", 한국해양공학회지, 18(6), 8-15.
  13. Booij, N., Ris, R.C. and Holtjuijsen, L.H., 1999, "A third-generation wave model for coastal regions, Part I, Model description and validation", J. Geophys. Res., Vol.104, C4, 7649-7666. https://doi.org/10.1029/98JC02622
  14. Booij, N., Haagsma, IJ.G., Holtjuijsen, L.H., Kieftenburg, A.T.M.M., Ris, R.C., Van Der Westhuysen, A.J. and Zijlema, M., 2006, SWAN-User manual. Delft University of Technology, Environmental Fluid Mechanics Section, available from http:// www.fluidmechanics.tudelft.ni/swan/index.htm.
  15. Goda, 1985, Random sea and design of marine structures, University of Tokyo Press, 1-323.
  16. Ris, R.C., Booij, N. and Holtjuijsen, L.H., 1999, "A third-generation wave model for coastal regions, Part II, Verification", J. Geophys. Res., Vol.104, C4, 7667-7681. https://doi.org/10.1029/1998JC900123

Cited by

  1. Evaluation of Organic Matter and Trace Metal Contaminations of Intertidal Sediments from Coastal Islands in the Southern Region of Jeollanam Province vol.46, pp.5, 2013, https://doi.org/10.5657/KFAS.2013.0626
  2. Sanitary assessment of the oyster rack culture waters in Wando, Korea vol.31, pp.2, 2015, https://doi.org/10.9710/kjm.2015.31.2.129