• Title/Summary/Keyword: 파단면 분석

Search Result 139, Processing Time 0.022 seconds

Standardization of Bending Impact Test Methods of Sn-Ag-Cu Lead Free Solder Ball (Sn-Ag-Cu계 무연 솔더볼 접합부의 굽힘충격 시험방법 표준화)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • An impact bending test method was used to evaluate the reliability for the solder joint of lead-free solder ball. In order to standardize the test method, the four point impact bending test was applied under the conditions of various frequencies and amounts of +/-amplitude respectively. Effects on the results were analysed. The optimum condition for impact bending test achieved in this study was the frequency of 10 Hz, and the amplitude of (+12/-1)~(+15/-1). 3 kinds of surface finishes Cu-OSP (Organic Solderability Preservative), ENIG (Electroless Nickel Immersion Gold), and ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold) were used. Fracture surface showed that cracks were initiated and fractured along the intermetallic layer in the case of surface finishes of Cu-OSP and ENIG, while in the case of ENEPIG the cracks were initiated and propagated in the solder region.

Dielectric characteristics of the transducer materials due to irradiation of photon beam (광자선 조사에 따른 변환기재료의 유전특성)

  • Ko, K.Y.;Kim, T.Y.;Back, G.M.;Cho, K.S.;Lee, C.H.;Lee, S.W.;Hong, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.316-318
    • /
    • 2003
  • 본 연구에서는 전기적 특성, 기계적 특성, 내수성 및 내유성이 우수한 고분자 화합물로 산업용, 콘덴서절연재료용, 의료센서용 등 각종 절연재료 및 유전재료로 활용되어 지고 있는 변환기용 PET박막에 광자선을 10[Gy] 15[MeV], 30[Gy] 15[MeV], 50[Gy] 15[MeV]를 조사하여 물성분석 및 전기적 특성중 유전정접 특성에 관하여 검토하였다. 물성분석으로 X-선 회절(XRD) 분석 결과 조사량에 따라 피크의 크기가 커지므로 결정성이 더욱 좁아짐을 알수 있었으며 적외선 분광(FTIR) 측정결과로 파수 1752[$cm^{-1}$]에서는 C=O기의 신축운동 기여로 피크가 나타나며 파수 1266[$cm^{-1}$]에서 =C-O기의 신축운동기여와 그리고 1019[$cm^{-1}$]에서는 벤젠환의 진동기여로 흡수 피크가 나타남을 알 수 있었고, 전자현미경을 이용하여 800배로 확대한 시료의 파단면을 조사한 결과 결정질과 비정질 영역이 혼재하고 있는 것을 확인하였다. 유전정접 특성으로는 측정온도범위 상온에서 130[$^{\circ}C$]와 인가전압 범위 1[V]에서 20[V]를 변화시켜 각각의 조사량에 대한 PET 박막의 유전특성의 온도의존성 및 주파수 의존성에 대하여 실험한 결과 변환기 재료의 가능성을 조사하였다.

  • PDF

Carbon Nano Tube Dispersion Evaluation in B-stage Resin Films (B-stage 레진 필름의 카본나노튜브 분산도 평가 및 제조공정 최적화)

  • Oh, Young-Seok;Park, Tea-Hoon;Byun, Joon-Hyung;Yi, Jin-Woo;Kim, Byung-Sun;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.353-357
    • /
    • 2016
  • An appropriate way to fabricate a hybrid composite containing evenly dispersed carbon nano tubes(CNTs) is to stacking B-stage resin films that contain evenly dispersed CNTs and various reinforcing fiber layers alternatively. In the present study, B-stage resin films are manufactured via shear mixing and three-roll milling. CNT dispersion in resin via these two processes are evaluated by SEM on their fracture surfaces. For more efficient process, the dispersivities are evaluated according to the number of calendering passes. Samples are made for different number of passes during calendering, and their dispersions are evaluated via SEM fractographs as well as by measuring their electrical conductivities. Additionally, the optimal process conditions are obtained by measuring the electrical conductivity and evaluating their dispersivity of the samples prepared by gap mode and force mode.

A Study on the Cause and Improvement of Crack in the Installing Structure of the Bulkhead of Aircraft (항공기 Bulkhead 체결구조의 균열 원인 및 개선에 관한 연구)

  • Choi, Hyoung Jun;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.448-454
    • /
    • 2020
  • This study aims to determine the cause of structural defects occurring during aircraft operations and to verify the structural integrity of the improved features. The fracture plane was analyzed to verify the characteristics of the cracks and the fatigue failure leading to the final fracture was determined by the progress of the cracks by the repeated load. During aircraft operations, the comparative analysis of the load measurement data at the cracks with the aircraft design load determined that the measured load was not at the level of 30% of the design to be capable of being damaged. A gap analysis resulted in a significant stress of approximately 32 ksi at the crack site. Pre-Load testing also confirmed that the M.S. was reduced by more than 50% from +0.71 to +0.43, resulting in a sharp increase in aircraft load and the possibility of cracking when combined. Thus, structural reinforcement and the removal of the gap for aircraft cracking sites improved the defect. Based on the structural strength analysis of the improvement features, the bulkhead has a margin of about +0.88 and the fitting feature is about +0.48 versus allowable stress. In addition, the life analysis results revealed an improvement of approximately 84000 hours.

INFLUENCE OF LIGHT IRRADIATION OVER SELF-PRIMING ADHESIVE ON DENTIN BONDING (상아질접착제에 대한 광조사가 접착에 미치는 영향)

  • 류현욱;김기옥;김성교
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.409-417
    • /
    • 2001
  • The purpose of this study was to investigate the influence of light irradiation over self-priming adhesive on dentin bonding. After acid etching the exposed dentin, a self-priming adhesive (Prime&Bond$^{\circledR}$NT dental adhesive system Dentsply DeTrey, GmbH, Konstanz, Germany) was applied and light irradiation was done for 20 sec with regular intensity (600 mW/$\textrm{cm}^2$) in group I and for 3 sec with ultra-high intensity (1930 mW/$\textrm{cm}^2$) in group III. No light irradiation was done over self-priming adhesive in groups II and IV. Composite resin was added on the self-priming adhesive and irradiated for 40 sec with regular intensity (600 mW/$\textrm{cm}^2$) in groups I and II and for 3 sec with ultra-high intensity (1930 mW/$\textrm{cm}^2$) in groups III and IV. To see the effect of light curing time on dentin bonding, another 3 group specimens were prepared. Without light-irradiation over self-priming adhesive, added composite resin was irradiated for 3, 6, or 12 sec with ultra-high intensity light. After bonded specimens were stored in 37$^{\circ}C$ distilled water for 24 hours, shear bond strength were measured using a universal testing machine (4202, Instron, Instron Co., U.S.A.) and fractured surfaces were examined under a stereomicroscope (SZ-PT Olympus, Japan). Statistical analysis were done with one-way, two-way ANOVA and chi-square test. The results were as follows : 1. The shear bond strengths from the groups irradiated over self-priming adhesive were significantly higher than those from the groups without irradiation (p<0.05). 2. There was no significant shear bond strength difference between regular intensity light irradiation groups and ultra-high intensity ones (p>0.05). 3. There was no significant shear bond strength difference among various irradiation time groups with ultra-high intensity ones (p>0.05). 4. In stereomicroscopic examination of fractured surfaces, adhesive-cohesive mixed failure mode was mostly seen in all groups, and there was no significant difference in failure mode among groups (p>0.05).

  • PDF

Optimization of sintering process of the far-infrared radiation ceramic (원적외선 방사 세라믹의 소결공정 최적화)

  • Park, Jae Hwa;Kim, Hyun Mi;Kang, Hyo Sang;Choi, Jae Sang;Choi, Bong Geun;Nam, Ki Woong;Nam, Han Woo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • Far-infrared radiation ceramic is an attractive material that provides thermal therapy by permeating the infrared rays into the deep inside of the human skin. Therefore, it is currently used for thermal therapy devices, thermal mat, heating equipment and so on. This work aims to optimize the sintering process of the far-infrared radiation ceramic with the process parameters of temperature and time. A variety of characterization tools have been used to investigate the optimal sintering condition of far-infrared radiation. The phase of far-infrared radiation ceramic was characterized by using X-ray diffraction (XRD) and microstructure of fracture surface was studied by scanning electron microscopy (SEM). The FT-IR was also performed to measure the far-infrared emissivity.

Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block (석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향)

  • Kim, Kyung Hoon;Lee, Sangmin;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.432-436
    • /
    • 2017
  • Carbon blocks were prepared by compression molding process using the mixture of isotropic cokes and binder pitches, which were reformed with different ${\beta}$-resin contents from pyrolysis fuel oil. Physical and chemical properties and also thermal behavior of binder pitches were investigated through elemental analysis, FT-IR and thermogravimetric analysis, respectively. The adhesion of binder pitches to isotropic coke particles was evaluated from SEM images of the fracture surface of carbon blocks. From these results, it is shown that the adhesion between the cokes and binder was enhanced by increasing the ${\beta}$-resin content of binder pitches. The density of the carbon block after carbonization also increased from 1.325 to $1.383g/cm^3$ by increasing the ${\beta}$-resin content of binder pitches from 1.4 to 20.1%.

Analysis of Characteristics of CFRP Composites Exposed Under High-Temperature and High-Humidity Environment for a Long Period (고온 다습한 환경에 장기간 노출된 CFRP 복합재료의 특성 분석)

  • Hong, Suk-Woo;Ahn, Sang-Soo;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.889-895
    • /
    • 2012
  • Carbon fiber reinforced plastic (CFRP) composites have high specific stiffness and high specific strength. Therefore, they are increasingly being use, instead of conventional metallic materials in the aviation and automobile industries, where there is a strong demand for lightweight materials. In aircraft, the fuselage is exposed to severe conditions of high temperatures and high humidity. Therefore, it is necessary to estimate the strength of CFRP composites under real conditions from the viewpoint of aircraft safety. In this study, CFRP specimens were immersed in distilled water at $75^{\circ}C$ for a long time. Then, tensile tests were performed on these specimens, and the fracture characteristics of the fractured surfaces were analyzed using SEM. A fatigue test was performed on specimens immersed for 300 days with R=0.1, and it was confirmed that the fatigue life deteriorated in immersed specimens compared to specimens that were not immersed.

A Study on the Preparation of Wood-Polymer Composites with Recycled PE films (재활용 PE수지를 이용한 Wood-Polymer Composites 제조에 관한 연구)

  • Kim, Ryeun-Kwan;Kang, Min;Kim, Hea-Tae;Song, Byung-Sun;Yoon, Tae-Ho
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 1999
  • Wood-Polymer Composites (WPC) m s prepared irom recycled films of agricullural use and wood wastes, and LLDPE and neal PE resin mlxlurr war also utilized in order to cornpiue the praperlies. Molc~ca nhydride (MA) and dicumyl peroxide were used as an adheslon pmmoler and an il~lliatotor~, .espcmivelyT. ensile prapenies of W Cw zrc measured via lenslle test as a funclieu of woad lille~m d MA contmt, and rractu1.e surface was also mvestigaled wilh SEM. As the content of wwd tiller mcreased, clongauon deneased bul modulus increased However, tensile slrength OI WPC increased only when MA war used, and 1 wt.% of MA may be hgh enough to increase the tensile properties. The tensilc ptopcrlies af WPC prepwed from recycled PE films were &nost same as thosc of neal PE resin mixture.

  • PDF

Characteristics of High Strength Polyethylene Tape Yarns and Their Composites by Solid State Processing Methods (고상공정법에 의한 고강도 폴리에틸렌 테이프사와 그 복합재료의 특성)

  • Lee, Seung-Goo;Cho, Whan;Joo, Yong-Rak;Song, Jae-Kyung;Joo, Chang-Whan
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 1999
  • The manufacture of high strength polyethylene(HSPE) tape yarns has been accomplished by a solid state processing(SSP) method as the compaction of ultra-high molecular weight polyethylene(UHMWPE) powders and drawing of the compacted film under the melting point without any organic solvents. In this study, the characteristics of HSPE tape yarns produced by SSP which is desirable for production cost and environmental aspect were analyzed. As the results, tensile strengths of HSPE tape yarns increased with increasing the draw ratio and the fracture morphology of highly drawn HSPE tape yarns showed more fibrillar shape than the low drawn one. Interfacial shear strengths of HSPE tape yarns with vinylester resin increased by $O_2$ plasma treatment and maximum interfacial shear strength was obtained in the plasma treatment condition of 100W and 5min. In addition, mechanical properties of HSPE tape yarn reinforced composites were investigated and compared with those of the gel spun HSPE fiber reinforced composites.

  • PDF