• Title/Summary/Keyword: 파괴인성 실험

Search Result 160, Processing Time 0.027 seconds

Measurement of Mode I Fracture Toughness of Rocks with Temperature and Moisture Conditions at Low Temperature (저온하에서의 온도 및 함수 조건에 따른 암석의 모드 I 파괴인성 측정)

  • Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Lee, Hi-Keun
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.352-361
    • /
    • 2001
  • Mode I fracture toughness ( $K_{IC}$) of the frozen rocks and that of the frozen-thawed rocks were obtained by using BDT and CCNBD specimens. The test temperatures ranged from +$25^{\circ}C$ to -16$0^{\circ}C$. Wet and air-dry specimens of granite and sandstone were used in order to investigate the effect of water and porosity on fracture toughness. The SEM images of the frozen-thawed rocks were also analysed to check the density of thermal cracks. The $K_{IC}$ of the frozen rocks increased as the test temperature went down. The rate of increase was higher in wet condition than in dry condition and the rate of increase for wet granite was higher than that for wet sandstone. The $K_{IC}$ of the frozen-thawed rocks varied within 15% from the $K_{IC}$ of the rocks at room temperature. After one freeze-thaw process, thermal crack occurred in granite but no thermal cracks occurred in sandstone. And the crack density was increased as the temperature went down.n.

  • PDF

Mixed-mode fracture toughness measurement of a composite/metal interface (복합재료/금속 접착 계면의 혼합모드 파괴인성 측정)

  • Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Interfacial fracture toughness under various mixed-mode loading is measured to provide a mixed-mode fracture criterion of a composite/metal bonded joint. Experimental fracture characterization tests were carried out using a SLB (single leg bending) specimen, which controls mode ratio with the specimen thickness. The experimental result of the SLB test conforms that interfacial fracture toughness increases as the mode II component increases. The effect of loading mode on interfacial crack growth is investigated on the basis of crack path observation using microscopic image acquisition technique. The influence of interfacial roughness on adhesion strength is also discussed.

A Study on the Weld Part Fracture Toughness of Austenite Type Stainless Steel for Cryogenic Liquid Nitrogen Storage Tank (초저온 액화질소 저장탱크 오스트나이트계 스테인리스강의 용접부의 파괴인성 연구)

  • Kim, Young-Deuk;Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae;Bae, Won-Byoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.802-808
    • /
    • 2011
  • One of the important mechanical properties of cryogenic temperature structure material is fracture toughness. Research on normalization of fracture toughness test method is becoming very important issue with development of cryogenic structural elements. Specially, mechanical properties estimation by each micro-structure of welding department is important because it can cause unstable fracture when use under cryogenic environment in case of welding department. In this study, fracture toughness estimation test was carried out to unloading compliance method and sensitization heat-tread minimized test specimen at liquid nitrogen (77K), liquid helium (4K), 293K temperature to STS-316L base metal and weld metal.

Evaluation and Interpretation of the Fracture Toughness of Rocks (암석 류의 파괴인성계수의 측정과 해석방법에 관한 연구)

  • Baek, Hwan-Jo;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.277-284
    • /
    • 1996
  • 암석의 파괴인성계수는 암석이 갖는 불균질성 및 비등방성에 의하여 시험조건에 따른 측정자료의 분산이 심하다. 즉, 시험편의 형태나 크기에 따른 변화가 심하여 기존의 선형탄성 파괴역학 이론의 적용에 문제점이 있는 것으로 지적되고 있다. 이러한 자료의 분산을 최소화하기 위한 방법의 하나로 균열감응도를 적용한 해석을 제시하고 있다. 균열감응도란 파괴역학 실험 당시 시험편에 가해진 인공 균열의 감응도를 말하며 이는 3점 하중에 의한 파괴가 균열의 성장에 의한 파괴인지, 혹은 단순히 인장파괴에 의한 것인지를 판명함으로써 측정자료의 선택을 명확하게 하기 위한 방법의 하나로 적용될 수 있다.

  • PDF

Life Prediction and Evaluation of Fracture Toughness of a Cr-Mo Degraded Steel During Long Service (장기 사용 Cr-Mo강 열화재의 파괴 인성 평가와 수명예측)

  • 권재도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1421-1428
    • /
    • 1992
  • It has been increasingly recognized that the safety analysis considering fracture mechanics is required of the pressure vessels made of 2 1/4 Cr-1Mo steel for safe operation due to temper-embrittlement during long term service. In this study, the fracture toughnesses of degraded and recovered 2 1/4 Cr-1Mo steels have been studied with J$_{IC}$ test specimens at room temperature and the results will be compared with the data obtained from the Charpy impact test. The fracture toughness data from above experiments will be applied to life prediction based on the surface crack growth for degraded and recovered Cr-Mo pressure vessels.

Fracture Properties and Microstructural Characteristics of Rock (암석의 파괴역학적 특성과 미세구조에 관한 연구)

  • Baek, Hwan-Jo
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.267-275
    • /
    • 1996
  • 금속과 같은 균질한 재료의 균열파괴의 특성을 설명하기 위하여 도입된 파괴역학의 이론들은 1960년대 이후 콘크리트나 암석 등에 대하여 적용되기 시작하였다. 파괴인성계수(fracture toughness)는 균열의 성장에 대한 재료의 저항을 나타낸다. 그러나, 암석의 파괴역학적 특성은 암석이 갖는 불균질성이나 비등방성에 의하여 영향을 받는다. 즉, 암석의 파괴역학적 특성의 측정은 시험편의 크기나 초기균열의 길이, 시험편의 형상 등에 의하여 측정자료의 분산이 심하며 따라서 다른 기본 물성들의 경우에서와 마찬가지로 일정한 시험기준의 도입이 요구되었다. 1988년에 국제암반공학회(ISRM)에서 제시한 표준시험방법은 시험편의 제작이나 시험방법에 있어서 복잡한 과정을 요구하고 있다. 본 논문에서는 표준시험방법에서 사용되는 시험편의 형태에 비하여 비교적 간단한 시험방법들에 의하여 얻어진 파괴적인성계수들을 서로 비교하여 제시하고 시험편의 크기와 기타 시험조건에 따른 파괴인성계수 측정치의 변화를 나타내고 있다. 또한, 암석에 포함되어있는 자연균열들의 특성과 파괴역학실험 중 유발되는 인공균열들의 형태를 비교하여 실험실에서 얻은 파괴역학적 계수들의 현장적용에 대한 문제점들을 지적하고 있다.

  • PDF

An Experimental Study on Mode ll Fracture Toughness Determination of Rock (암석의 전단 파괴인성 측정에 관한 실험적 연구)

  • 윤정석;전석원
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.64-75
    • /
    • 2003
  • This study presents a newly suggested test method of Mode II fracture toughness measurement called "Punch Through Shear Test" which was originally proposed by Backers and Stephansson in 2001. The purpose of this study is to check the validity of the suggested testing method by performing Mode II fracture toughness tests for Daejeon Granite. In addition, the optimal specimen geometry for the testing and the relation between Mode II fracture toughness and confining pressure were also investigated. Fractured surface was observed to be very smooth with lots of rock debris which came off fracture surface which obviously implies that the surface was sheared off. This confirms that Mode II fracturing actually occurred. In addition, numerical analyses including continuum analysis, particle flow code analysis and crack propagation simulations were performed. Results of these numerical analyses indicated that the cracks occurred in the specimen were predominantly in Mode II and these cracks led to failure of the test specimen. From this investigation, it can be concluded that the newly suggested "Punch Through Shear Test" method provides a reliable means of determining the Mode II fracture toughness. fracture toughness.

Effect of Change of Grain-Boundary Phases on the Fracture Toughness of Silicon Nitride Ceramics (입계상 변화가 질화규소의 요업체의 파괴인성에 미치는 영향)

  • Lee, Sang-Hun;Park, Hui-Dong;Lee, Jae-Do;Kim, Do-Yeon
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.699-705
    • /
    • 1995
  • Effect of the grain boundary phases in Si$_3$N$_4$ ceramics on the fracture tonghness has been investigated. The Si$_3$N$_4$-Y$_2$O$_3$-SiO$_2$, (YS) and Si$_3$N$_4$-Y$_2$O$_3$-Al$_2$O$_3$(YA) systems were Can/HIP treated at 1750$^{\circ}C$ and then heat-treated at 1800∼2000$^{\circ}C$. The fracture toughness of the YA system, the grain boundary phase was only glass phase after heat-treatement, was increased. That of the YS system, however, the grain boundary phase was changed from crystalline and glass to glass phase after the heat -treatement above 1900$^{\circ}C$, was abruptly decreased. The reason of the sudden drop of the fracture toughness of the YS system was believed that the change of the grain boundary phases from crystalline and glass to glass phase effected un the fracture behavior.

  • PDF

Fracture Toughnesses of Mortar and Concrete Through the Splitting Tensile Tests with Various Sizes of Specimens (크기가 다른 원형공시체의 할렬인장 실험을 통한 모르타르와 콘크리트의 파괴인성연구)

  • 김진근;구헌상;임선택
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.89-95
    • /
    • 1990
  • Possibility for the evaluation of fracture properties of mortar and concrete by splitting tensile test was stud¬ied. Splitting tensile tests were conducted to obtain the fracture loads for several sizes of cylindrical specimens of mortar and concrete with initial notch. From the results, fracture energy and fracture toughness by SEL were obtained and compared with the values by Rooke and Cartwright, and r.E.Moo The values by SEL method converged effectively. SEL method was shown to be a good method to obtain fracture properties of mortar and concrete.

Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test (Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추)

  • Kim, Nak Hyun;Kim, Yun Jae;Yoon, Kee Bong;Ma, Young Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.753-760
    • /
    • 2013
  • The hydrogen embrittlement of metallic materials is an important issue from the viewpoint of structural integrity. In this regard, the estimation of mechanical properties and fracture toughness under hydrogen conditions provides very important data. This study provides an experimental validation of the approach for simulating the small punch of Inconel 617 using finite element damage analysis, as recently proposed by the authors, and applies an inverse method for the determination of the constitutive tensile behavior of materials. The mechanical properties obtained from the inverse method are compared with those obtained from the tensile test and validated. The mechanical properties and fracture toughness are predicted by using the inverse method and finite element damage analysis.