• 제목/요약/키워드: 티타니아 나노튜브

검색결과 13건 처리시간 0.023초

인가전압에 따른 불산 기반 혼합 전해질에서의 산화 티타니아 나노 구조의 형태학적 변화 (The morphological transition of anodic TiO2 nano-structures as a function of applied potential in HF-based mixed electrolytes)

  • 박지현;이기백;최진섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.144-144
    • /
    • 2017
  • 제한된 조건에서 타이타늄을 양극산화 하였을 때, 자기 정렬된 나노 튜브 형태의 티타니아 구조를 얻을 수 있으며, 그 형태는 양극산화 조건에 따라 변할 수 있음은 학계에 이미 잘 알려져 있다. 그러나 자세한 메커니즘과 전기화학적 조건들은 아직 명확하게 밝혀지지 않았다. 본 연구에서는 자기 정렬된 티타니아 나노 구조의 형태학적 변화를 인가전압과 혼합 전해질의 농도를 변화시켜가며 체계적으로 연구하여, 티타니아 나노 튜브와 마이크로 콘이 생성되는 조건에 대한 지도를 그렸다. 일반적으로 인가 전압이 증가하고, 혼합 전해질에서의 불산의 농도가 낮을수록, 티타니아 나노 구조가 나노튜브에서 마이크로 콘으로 변화하는 것을 확인하였다. 티타니아의 다양한 기능적인 특성을 바탕으로, 구조변화에 대한 전기화학적 이해를 통해, 물 분해, 연료 감응형 태양전지(DSSCs), 광촉매, 가스 센서 등에 적용될 수 있을 것으로 기대한다.

  • PDF

CdS/Titania-나노튜브 복합 막을 이용한 광촉매적 수소제조 (CdS-Titania-Nanotube Composite Films for Photocatalytic Hydrogen Production)

  • 이현미;소원욱;백진욱;공기정;문상진
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.230-237
    • /
    • 2007
  • 알칼리 수열합성법에 의해 높은 비표면적을 갖는 티타니아 나노튜브(TiNT)를 합성하였다. 가시광용 광촉매로서의 응용성을 조사하기 위해 CdS 나노입자와 조성(r=TiNT/(CdS+TiNT))을 바꿔가며 일련의 무기 복합필름을 제조하였다. 또한 비교를 위해 티타니아 나노튜브 대신 티타니아 나노입자와 CdS로 구성된 복합체를 역시 제조하였다. 합성된 티타니아 나노튜브는 $200^{\circ}C$ 이상의 소결온도에서 부분적으로 튜브 구조의 붕괴가 시작되었지만, CdS와의 복합체는 $450^{\circ}C$ 까지도 비교적 안정한 구조를 유지하였다. (CdS+TiNT)복합필름은 티타니아 나노입자 복합계와 비교할 때 가시광 흡수 측면에서는 유사한 정도를 나타내었지만, 수소생산 활성과 광전류 발생은 오히려 훨씬 낮은 값을 나타내었다. 결과적으로, 티타니아 나노튜브는 그의 높은 비표면적에도 불구하고 자기들끼리의 응집성이 강하여 CdS와의 전기적 상호작용이 약하며, 특히 얇은 튜브벽 두께(${\sim}3nm$)와 낮은 결정성에 기인하는 약한 광전류 특성은 이의 광촉매로서의 응용성을 상당히 제한하는 요소로 나타났다.

임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지 (Nanotechnology in the Surface Treatment of Titanium Implant.)

  • 오승한
    • 대한치과의사협회지
    • /
    • 제48권2호
    • /
    • pp.106-112
    • /
    • 2010
  • 아직까지 나노관련 기술이 티타늄 임플란트에 직접적으로 사용되는 부분이 상당히 미약하다. 하지만, 수직으로 정렬된 구조를 가지는 티타니아 나노튜브는 생체 내 대부분의 임플란트 재료로 사용되는 티타늄의 차세대 개발에 있어서 가장 중요한 영향을 미칠 것이다. 본문에 설명되어 있는 내용들 뿐 만이라, 티타니아 나노튜브는 파골세포의 골 흡수성 방지, 줄기세포의 특정 성체세포로의 분화, 연골세포의 재분화, 간세포를 이용한 생물 반응기(bio-reactor) 개발 등 생체재료의 여러 분야에서 많이 연구되고 있다. 특히, 줄기세포에 관한 연구는 차세대 임플란트 개발에 있어서 가장 중요한 연구 분야 중의 하나로서, 골을 형성하는 조골세포와 골을 파괴하는 피골세포 모두 줄기세포 로부터 만들어진다는 것을 유념해야 할 것이다. 만약, 티타니아 나노튜브의 독특한 나노구조를 이용하여 줄기세포의 조골세포로의 직접 분회를 제어하는 기술이 개발되어 상업화된다면, 이 기술을 기반으로 하여 현 재까지 개발된 모든 표면 증착 및 코팅 기술을 새롭게 이용하는 차세대 티타늄 임플란트의 개발을 위한 초석이 되리라고 본다.

티타니아 나노튜브(TNT) 박막의 제조 및 특성에 관한 연구 (Preparation and Characterizations of Titania Nanotube Thin Films)

  • 이영록;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.652-656
    • /
    • 2011
  • 양극산화에 의해 티타니아 나노튜브(TNT) 박막과 나노필름(TNF) 박막을 제조하여 이의 광촉매 반응특성을 연구하였다. TNT 박막이 형성된 티타늄 판에 자외선을 조사하여 용액 내 메틸렌블루의 분해율을 측정하였다. TNT의 길이가 증가할수록 광촉매(PC) 반응에 의한 메틸렌블루 분해율이 증가하였다. 광전자의 재결합을 억제하기 위해 포텐셜을 가해준 광전자촉매(PEC) 반응에서는 전반적으로 분해율이 상승하였으며, 길이에 따른 분해율 차이가 상대적으로 작았다. 튜브형태가 아닌 필름형태의 TNF는 TNT에 비해 낮은 분해율을 나타내었으며, 광촉매 반응에서 분해율의 차이가 더 크게 나타났다.

티타니아 나노튜브를 이용한 염료감응 태양전지 (Titania Nanotube-based Dye-sensitized Solar Cells)

  • 김태현;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.447-452
    • /
    • 2018
  • HF, NaF, $NH_4F$와 같이 플루오르 이온(F-)이 함유된 전해질에서 티타늄 금속판을 양극산화시켜 $0.34{\mu}m$부터 최대 $8.9{\mu}m$까지 다양한 길이의 티타니아 나노튜브(TNT)를 제조하였다. 양극산화에 의해 제조된 TNT를 $450^{\circ}C$에서 소성시키면 광 활성을 가지는 아나타제 결정이 생성되었다. TNT 기반 염료감응 태양전지(DSSC)는 TNT 길이가 $2.5{\mu}m$일때 광전환 효율이 4.71%로 최대를 나타내었다. 이 값은 티타니아 페이스트를 코팅하여 제작한 FTO 기반 DSSC의 광전환 효율 보다 약 18% 높았다. 또한 TNT-DSSC의 단락전류밀도($J_{sc}$)는 $9.74mA/cm^2$로 FTO-DSSC의 $7.19mA/cm^2$ 보다 약 35% 이상 높았다. TNT-DSSC 태양전지의 광전환 효율이 더 높은 이유는 염료에서 생성된 광전자가 TNT를 통해 전극 표면으로 빨리 전달되어 광전자와 염료가 재결합 되는 것이 억제되었기 때문이다.

가시광감응을 위한 금속이나 $WO_3$ 도핑된 $TiO_2$ 튜브의 광활성 연구 (Photocatalytic activity under visible-light with metal or $WO_3$ deposited-$TiO_2$ tubes)

  • 허아영;이창하;박민성;심은정;윤재경;주현규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.227.1-227.1
    • /
    • 2010
  • 본 연구는 자외선 영역의 흡수로 전자 정공의 전하쌍을 생성함으로써 광전압 및 전류를 일으키는 티타니아 물질을 금속지지체 표면에 양극산화로 튜브형 $TiO_2$(anodized tubular $TiO_2$; ATT)로 제조한 후 나노크기의 금속 혹은 $WO_3$입자를 담지하여 광감응 재료로 활용하였다. 이는 기존의 입자나 콜로이드 형태로 광촉매 물질을 고정화하여 사용한 재료의 탈리현상 및 효율저하를 극복하기 위함이다. ATT는 전해질 내에 전기화학적 에칭율과 화학적 용해율의 비율에 의해 나노튜브 길이 성장에 영향을 미치는데 이를 유기 전해질과 불산 전해질을 사용하여 정전압 혹은 정전류의 조건에서 다양한 길이의 $TiO_2$ 나노튜브를 제조하였다. 여기에 전기분해담지(electrolytic deposition; ELD)를 통하여 정전류 조건에서 다양한 금속(Pt, Pd, Ru)을 나노크기의 형태로 담지하여 광촉매 내 생성된 전자 정공의 재결합을 줄이고자 하였고 $WO_3$의 담지를 통하여 가시광 감응을 높이고자 하였다. 제조된 여러 조건의 시료는 SEM과 EDAX를 통하여 형태와 길이, 담지량을 확인 하고 XRD를 이용하여 열처리 온도에 따른 결정화상태를 확인하였으며 광전류 측정 및 Cr(VI)의 광환원과 MB의 광분해를 통하여 광효율을 관찰하였다. 금속이 도핑되었을 경우 순수 ATT보다 보통 3배의 흡착률과 UV광원 아래 2배의 광효율을 관찰할 수 있었는데 이 중 Pt의 담지가 가장 효율이 좋았으며 흡착률에서는 담지량의 증가에 따른 증가선을 관찰 할 수 있었으나 광원 사용시 3%담지율에서 최적을 확인 할 수 있었다. 또한 $TiO_2$외 가시광감응 활성을 높이기 위한 다양한 광촉매제조가 진행 중에 있다.

  • PDF

액상법에 의한 가시광감응성 티타니아 나노튜브의 제조 (Preparation of Visible-light Active TiO2 Nanotubes by Solution Method)

  • 이현미;소원욱;백진욱;공기정;문상진
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.182-185
    • /
    • 2012
  • $TiCl_4$와 히드라진/암모니아수를 사용하여 졸겔 및 강알칼리 수열합성법의 신규 2단 합성법을 통해 N도핑된 $TiO_2$ 나노튜브를 제조하였다. 제조된 나노튜브는 튜브형상의 손상이 없이 10 nm 전후의 직경과 3 nm 이하의 벽두께를 가지며, 잘발달된 아나타제 결정상을 나타내었다. 또한 N이 도핑되어 일반 도핑되지 않은 $TiO_2$ 나노튜브와 아나타제상입자에 비해 각각 ~35 nm, ~25 nm 정도 적색편이 된 우수한 가시광 흡수능과 노란색 색상을 보여 주었다.

양극산화를 이용한 Titania Nanotube(TNT) 박막 제조 (Preparation of Titania Nanotube Thin films by Anodizing)

  • 이영록;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.28-34
    • /
    • 2011
  • 티타니아 나노튜브(Titania nanotube, TNT)는 티타늄을 $F^-$ 이온을 함유한 전해질 하에서 전기로 양극산화 시켜 제조 한 튜브형태의 박막으로 광학 활성을 가진다. 전해질은 증류수와 포름아마이드를 용매로 사용하였으며 HF, NaF, $NH_4F$$F^-$이온 성분으로 사용하였다. 전압과 양극산화 시간이 증가함에 따라 TNT의 길이와 직경도 증가하였다. 양극산화에 의해 제조된 TNT는 매우 규칙적인 튜브형태였으며, 제조 조건에 따라 길이는 최대 13.7 ${\mu}m$이었다. 생성된 티타니아는 비정질이었으며 열처리에 의해 아나타제 결정으로 바뀌었다.

양극 산화된 $TiO_2$ nanotube를 이용한 수소 생산 연구 (Hydrogen production by anodized $TiO_2$ nanotube under UV light irradiation)

  • 홍원성;박종혁;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.495-498
    • /
    • 2008
  • Photocatalytic water splitting into $H_2$ and $O_2$ using semiconductors has received much attention, especially for its potential application to direct production of $H_2$ for clean energy from water utilizing solar light energy. Since the report of Fujishima and Honda on the water splitting by photoelectrochemical cells, numerous different semiconducting materials have been used as photocatalysts for hydrogen generation from water. Among them, platinized titania significantly accelerates hydrogen production from water. For geometrical improvement of $TiO_2$ particle, porous $TiO_2$ structure was proposed and studied such as nanofiber, nanorod and nototubes. This research focuses on finding out the optimum temperature and electrolyte to produce $H_2$ by solar water splitting.

  • PDF