Browse > Article
http://dx.doi.org/10.9713/kcer.2011.49.1.028

Preparation of Titania Nanotube Thin films by Anodizing  

Lee, Young-Rok (Department of Chemical Engineering, Kyonggi University)
Jung, Ji-Hoon (Department of Chemical Engineering, Kyonggi University)
Publication Information
Korean Chemical Engineering Research / v.49, no.1, 2011 , pp. 28-34 More about this Journal
Abstract
Titania nanotube(TNT), which is a tube shaped thin film manufactured by anodizing titanium under $F^-$ ion electrolyte, has photo activity. Distilled water and formamide were used as solvent, and HF, NaF, $NH_4F$ were used as main $F^-$ ions for the electrolyte. The length and the diameter of TNT increased as the voltage and anodizing time increased. TNT prepared by anodizing was a very ordered tube, and had a maximum length of 13.7 ${\mu}m$ depending on the conditions of manufacturing. Titania prepared by anodizing was amorphous, and became an anatase crystal after heat treatment.
Keywords
Titania; Nanotube; Anodizing; Thin Film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, S., Choi, L. K. and Jung, J., "Characterization of Anodized Titanium Oxide Film and Photocatalytic Decomposition of Methylene Blue with Microcurrent," J. Adv. Oxid. Technol., 10(2), 354-360(2007).
2 Zwilling, M., Aucouturier, M. and Darque-Ceretti, E., "Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach," Electrochim. Acta, 45(6), 921-929(1991).
3 Varghese, O. K., Mor, G. K., Grimes, C. A., Paulose, M. and Mukherjee, N., "A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations," J. Nanosci. Nanotechnol, 4(7), 733-737(2004).   DOI   ScienceOn
4 Paulose, M., Varghese, O. K., Mor, G. K., Grimes, C. A. and Ong, K. G., "Unprecedented Ultra-high Hydrogen Gas Sensitivity in Undoped Titania Nanotubes," Nanotechnology, 17(2), 398-402(2006).   DOI   ScienceOn
5 Mor, G. K., Shankar, K., Varghese, O. K. and Grimes, C. A., "Photoelectrochemical Properties of Titania Nanotubes," J. Mater. Res., 19, 2989-2996(2004).   DOI   ScienceOn
6 Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A., "Enhanced Photocleavage of Water Using Titania Nanotube Arrays," Nano Lett, 5(1), 191-195(2005).   DOI   ScienceOn
7 Varghese, O. K., Paulose, M., Shankar, K., Mor, G. K. and Grimes, C. A., "Water- Photolysis Properties of Micron-Length Highly Ordered Titania Nanotube-Arrays," J. Nanosci. Nanotechnol., 5, 1158-1165(2005).   DOI   ScienceOn
8 Raja, K. S., Misra, M., Mahajan, V. K., Gandhi, T., Pillai, P. and Mohapatra, S. K., "Photo-electrochemical Hydrogen Generation Using Band-gap Modified Nanotubular Titanium Oxide in Solar Light," J. Power Sources, 161, 1450-1457(2006).   DOI   ScienceOn
9 Raja, K. S., Mahajan, V. K. and Misra, M., "Determination of Photo Conversion Efficiency of Nanotubular Titanium Oxide Photoelectrochemical Cell for Solar Hydrogen Generation," J. Power Sources, 159, 1258-1265(2006).   DOI   ScienceOn
10 Macak, J. M., Tsuchiya, H., Ghicov, A. and Schmuki, P., "A New Concept Hybrid Electrochemical Surpercapacitor: Carbon/$LiMn_2O_4$ Aqueous System," Electrochem. Commun., 7, 1138-1142(2005).   DOI   ScienceOn
11 Perez-Blanco, J. M. and Barber, G. D., "Ambient Atmosphere Bonding of Titanium Foil to A transparent Conductive," Solar Energy Materials and Solar Cells, 92(9), 997-1002(2008).   DOI   ScienceOn
12 Yang, D. J., Park, H., Cho, S. J., Kim, H. G. and Choi, W. Y., "$TiO_2$-nanotube-based Dye-sensitized Solar Cells Fabricated by An Efficient Anodic Oxidation for High Surface Area," J. Phys. Chem. Solids, 69(5-6), 1272-1275(2008).   DOI   ScienceOn
13 Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K. and Grimes, C. A., "Application of Highly-ordered $TiO_2$ Nanotubearrays in Heterojunction Dye-sensitized Solar Cells," J. Phys. D: Appl. Phys., 39, 2498-2503(2006).   DOI   ScienceOn
14 Ong, K. G., Varghese, O. K., Mor, G. K., Shankar, K. and Grimes, C. A., "Application of Finite Difference Time Domain to Dyesensitized Solar Cells: the Effect of Nanotube-array Negative Electrode Dimensions on Light Absorption," Solar Energy Materials & Solar Cells, 91, 250-257(2007).   DOI   ScienceOn
15 Pillai, P., Raja, K. S. and Misra, M., "Electrochemical Storage of Hydrogen in Nanotubular $TiO_2$ Arrays," J. Power Sources, 161, 524-530(2006).   DOI   ScienceOn
16 Chu, S. Z., Inoue, S., Wada, K., Li, D., Haneda, H. and Awatsu, S., "Highly Porous $(TiO_2SiO_2TeO_2)/Al_2O_3/TiO_2$ Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and SolGel Process," J. Phys. Chem. B, 107, 6586 (2003).   DOI   ScienceOn
17 Paulose, M., Varghese, O. K., Mor, G. K. and Grimes, C. A., "Unprecedented Ultra-high Hydrogen Gas Sensitivity in Undoped Titania Nanotubes," Nanotechnology, 17, 398(2006).   DOI   ScienceOn
18 Macak, J. M., Tsuchiya, H., Bauer, S., Ghicov, A., Schmuki, P., Barczuk, P. J., Nowakowska, M. Z., Chojak, M. and Kulesza, P. J., "Self-organized Nanotubular TiO2 Matrix as Support for Dispersed Pt/Ru Nanoparticles: Enhancement of the Electrocatalytic Oxidation of Methanol," Electrochem. Commun., 7, 1417(2005).   DOI   ScienceOn
19 Adachi, M., Murata, Y., Harada, M. and Yoshikawa, Y., "Formation of Titania Nanotubes with High Photo-Catalytic Activity," Chem. Lett., 29, 942(2000).   DOI
20 Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z. and Dickey, E. C., "Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation," J. Mater. Res., 16, 3331(2001).   DOI   ScienceOn
21 Cai, Q., Paulose, M., Varghese, O. K. and Grimes, C. A., "The Effect of Electrolyte Composition on the Fabrication of Selforganized Titanium Oxide Nanotube Arrays by Anodic Oxidation," J. Mater. Res., 20, 230(2005).   DOI   ScienceOn
22 Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A., "Enhanced Photocleavage of Water Using Titania Nanotube-Arrays," Nano Lett., 5, 191-195(2005).   DOI   ScienceOn
23 Lee, W. J., Alhoshan, M. and Smyrl, W. H., "Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes," J. Electrochem. Soc., 153(11B), 499-B505(2006).   DOI   ScienceOn
24 Kang, S. H., Kim, J. Y., Kim, H. S. and Sung, Y. E., "Formation and Mechanistic Study of Self-ordered $TiO_2$ Nanotubes on Ti Substrate," J. Ind. Eng. Chem, 14. 52-59(2008).   DOI   ScienceOn
25 Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K. and Grimes, C. A., "Highly-ordered $TiO_2$ Nanotube Arrays up to 220 ${\mu}m$ in Length: Use in Water Photoelectrolysis and Dye-sensitized Solar Cells," Nanotechnology, 18, 065707 (2007).   DOI   ScienceOn
26 Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., Desai, T. A. and Grimes, C. A., "$TiO_2$ Nanotube Arrays of 1000 ${\mu}m$ Length by Anodization of Titanium Foil: Phenol Red Diffusion," J. Phys. Chem. C, 111(41), 14992-14997 (2007).   DOI   ScienceOn
27 Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A. and Grimes, C. A., "Anodic Growth of Highly Ordered $TiO_2$ Nanotube Arrays to 134 ${\mu}m$ in Length," J. Phys. Chem. B, 110(33), 16179-16184 (2006).   DOI   ScienceOn