DOI QR코드

DOI QR Code

Titania Nanotube-based Dye-sensitized Solar Cells

티타니아 나노튜브를 이용한 염료감응 태양전지

  • Kim, Taehyun (Department of Chemical Engineering, Kyonggi University) ;
  • Jung, Jihoon (Department of Chemical Engineering, Kyonggi University)
  • 김태현 (경기대학교 화학공학과) ;
  • 정지훈 (경기대학교 화학공학과)
  • Received : 2018.04.18
  • Accepted : 2018.05.08
  • Published : 2018.08.01

Abstract

Titanium nanotubes (TNT) of various lengths ranging from $0.34^{\circ}C$ to a maximum of $8.9^{\circ}C$ were prepared by anodizing a titanium metal sheet in an electrolyte containing fluorine ion ($F^-$) of HF, NaF and $NH_4F$. When TNT prepared by anodizing was calcined at $450^{\circ}C$, anatase crystals with photo activity were formed. The TNT-based dye-sensitized solar cell (DSSC) showed a maximum conversion efficiency of 4.71% when the TNT length was $2.5{\mu}m$. This value was about 18% higher than photo conversion efficiency of the FTO-based DSSC coated with titania paste. And the short circuit current density ($J_{sc}$) of the TNT-DSSC was $9.74mA/cm^2$, which was about 35% higher than the $7.19mA/cm^2$ of FTO-DSSC. The reason for the higher conversion efficiency of TNT-DSSC solar cells is that photoelectrons generated from dyes are rapidly transferred to the electrode surface through TNT, and the recombination of photoelectrons and dyes is suppressed.

HF, NaF, $NH_4F$와 같이 플루오르 이온(F-)이 함유된 전해질에서 티타늄 금속판을 양극산화시켜 $0.34{\mu}m$부터 최대 $8.9{\mu}m$까지 다양한 길이의 티타니아 나노튜브(TNT)를 제조하였다. 양극산화에 의해 제조된 TNT를 $450^{\circ}C$에서 소성시키면 광 활성을 가지는 아나타제 결정이 생성되었다. TNT 기반 염료감응 태양전지(DSSC)는 TNT 길이가 $2.5{\mu}m$일때 광전환 효율이 4.71%로 최대를 나타내었다. 이 값은 티타니아 페이스트를 코팅하여 제작한 FTO 기반 DSSC의 광전환 효율 보다 약 18% 높았다. 또한 TNT-DSSC의 단락전류밀도($J_{sc}$)는 $9.74mA/cm^2$로 FTO-DSSC의 $7.19mA/cm^2$ 보다 약 35% 이상 높았다. TNT-DSSC 태양전지의 광전환 효율이 더 높은 이유는 염료에서 생성된 광전자가 TNT를 통해 전극 표면으로 빨리 전달되어 광전자와 염료가 재결합 되는 것이 억제되었기 때문이다.

Keywords

References

  1. Chapin, D. M., Fuller, C. S. and Pearson, G. L., "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys., 25, 676(1954). https://doi.org/10.1063/1.1721711
  2. O'Regan, B. and Gratzel, M., "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films," Nature, 335, 737(1991).
  3. Rho, W., Jeon, H., Kim, H., Chung, W., Suh, J. and Jun, B., "Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: $TiO_2$ Nanotube Arrays in Active Layer," J Nanomaterials, 2015, 247689(2015).
  4. Kim, J., Sim, E., Dao, V. and Choi, H., "Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells," Korean Chem. Eng. Res., 54(2), 262 (2016). https://doi.org/10.9713/kcer.2016.54.2.262
  5. Suzuki, Y., Ngamsinlapasathian, S., Yoshida, R. and Yoshikawa, S., "Partially Nanowire-Structured TiO2 Electrode For Dye-Sensitized Solar Cells," Central Eur. J. Chem., 4(3), 476(2006). https://doi.org/10.2478/s11532-006-0015-3
  6. Kim, G., Kim, K., Cho, K. and Ryu, K., "Effects of Multi-layer and $TiCl_4$ Treatment for $TiO_2$ Electrode in Dye-sensitized Solar Cell," Appl. Chem. Eng., 22(2), 90(2011).
  7. Gratzel, M., "Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cells," J. Photochem, Photobiol. A, Chem., 164, 3(2004). https://doi.org/10.1016/j.jphotochem.2004.02.023
  8. Law, M., Greene, L., Johnson, J., Saykally, R. and Yang, P., "Nanowire Dye-Sensitized Solar Cells," Nat. Mater., 4(6), 455(2005). https://doi.org/10.1038/nmat1387
  9. Tenne, R. and Rao, C. N. R., "Inorganic Nanotubes," Philos. Trans. R, Soc. Lond. A, 362, 2099(2004). https://doi.org/10.1098/rsta.2004.1431
  10. Adachi, M., Murata, Y., Okada, I. and Yoshikawa, S., "Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells," J. Electrochem. Soc., 150, G488(2003). https://doi.org/10.1149/1.1589763
  11. Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z. and Dickey, E. C., "Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation," J. Mater. Res., 16, 3331(2001). https://doi.org/10.1557/JMR.2001.0457
  12. Lee, Y. and Jung, J., "Preparation of Titania Nanotube Thin Films by Anodizing," Korean Chem. Eng. Res., 49(1), 28(2011). https://doi.org/10.9713/kcer.2011.49.1.028
  13. Lee, Y. and Jung, J., "Preparation and Characterizations of Titania Nanotube Thin Films," Korean Chem. Eng. Res., 49(5), 652(2011). https://doi.org/10.9713/kcer.2011.49.5.652
  14. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A. and Grimes, C. A., "Anodic Growth of Highly Ordered $TiO_2$ Nanotube Arrays to 134 Microm in Length," J. Phys. Chem. B, 110(33), 16179 (2006). https://doi.org/10.1021/jp064020k
  15. Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., Desai, T. A. and Grimes, C. A., "$TiO_2$ Nanotube Arrays of 1000 ${\mu}m$ Length by Anodization of Titanium Foil: Phenol Red Diffusion," J. Phys. Chem. C, 111(41), 14992(2007). https://doi.org/10.1021/jp075258r