References
- Chapin, D. M., Fuller, C. S. and Pearson, G. L., "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," J. Appl. Phys., 25, 676(1954). https://doi.org/10.1063/1.1721711
-
O'Regan, B. and Gratzel, M., "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal
$TiO_2$ Films," Nature, 335, 737(1991). -
Rho, W., Jeon, H., Kim, H., Chung, W., Suh, J. and Jun, B., "Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency:
$TiO_2$ Nanotube Arrays in Active Layer," J Nanomaterials, 2015, 247689(2015). - Kim, J., Sim, E., Dao, V. and Choi, H., "Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells," Korean Chem. Eng. Res., 54(2), 262 (2016). https://doi.org/10.9713/kcer.2016.54.2.262
- Suzuki, Y., Ngamsinlapasathian, S., Yoshida, R. and Yoshikawa, S., "Partially Nanowire-Structured TiO2 Electrode For Dye-Sensitized Solar Cells," Central Eur. J. Chem., 4(3), 476(2006). https://doi.org/10.2478/s11532-006-0015-3
-
Kim, G., Kim, K., Cho, K. and Ryu, K., "Effects of Multi-layer and
$TiCl_4$ Treatment for$TiO_2$ Electrode in Dye-sensitized Solar Cell," Appl. Chem. Eng., 22(2), 90(2011). - Gratzel, M., "Conversion of Sunlight to Electric Power by Nanocrystalline Dye-sensitized Solar Cells," J. Photochem, Photobiol. A, Chem., 164, 3(2004). https://doi.org/10.1016/j.jphotochem.2004.02.023
- Law, M., Greene, L., Johnson, J., Saykally, R. and Yang, P., "Nanowire Dye-Sensitized Solar Cells," Nat. Mater., 4(6), 455(2005). https://doi.org/10.1038/nmat1387
- Tenne, R. and Rao, C. N. R., "Inorganic Nanotubes," Philos. Trans. R, Soc. Lond. A, 362, 2099(2004). https://doi.org/10.1098/rsta.2004.1431
- Adachi, M., Murata, Y., Okada, I. and Yoshikawa, S., "Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells," J. Electrochem. Soc., 150, G488(2003). https://doi.org/10.1149/1.1589763
- Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z. and Dickey, E. C., "Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation," J. Mater. Res., 16, 3331(2001). https://doi.org/10.1557/JMR.2001.0457
- Lee, Y. and Jung, J., "Preparation of Titania Nanotube Thin Films by Anodizing," Korean Chem. Eng. Res., 49(1), 28(2011). https://doi.org/10.9713/kcer.2011.49.1.028
- Lee, Y. and Jung, J., "Preparation and Characterizations of Titania Nanotube Thin Films," Korean Chem. Eng. Res., 49(5), 652(2011). https://doi.org/10.9713/kcer.2011.49.5.652
-
Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A. and Grimes, C. A., "Anodic Growth of Highly Ordered
$TiO_2$ Nanotube Arrays to 134 Microm in Length," J. Phys. Chem. B, 110(33), 16179 (2006). https://doi.org/10.1021/jp064020k -
Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., Desai, T. A. and Grimes, C. A., "
$TiO_2$ Nanotube Arrays of 1000${\mu}m$ Length by Anodization of Titanium Foil: Phenol Red Diffusion," J. Phys. Chem. C, 111(41), 14992(2007). https://doi.org/10.1021/jp075258r