• Title/Summary/Keyword: 트렌치 구조

Search Result 65, Processing Time 0.037 seconds

Fabrication of a low-power 1×2 polymeric thermo-optic switch with a trench structure (트렌치 구조를 이용한 저전력 1×2 폴리머 열 광학 스위치의 제작)

  • 여동민;김기홍;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • A low-power $1{\times}2$ polymeric thermo-optic switch with a trench structure is proposed and fabricated. The trench structure in the optimized region slows down the heat flow from the electrodes, which contributes to the reduction of power consumption. The temperature distribution in the polymer layers has been adjusted to increase the temperature gradient between the two arms of the Y-branch. For comparison, a $1{\times}2$ polymeric thermo-optic switch with no trench structure is fabricated together on the same substrate. In the device with a trench structure, the measured crosstalk is less than -17.0 dB for TE polarization.-15.0 dB for TM polarization. The power consumption is about 66 mW, which is 25% less than that of the device with no trench structure.

New Power MOSFET Employing Segmented Trench Body Contact for improving the Avalanche Energy (항복 에너지 향상을 위해 분절된 트렌치 바디 접촉 구조를 이용한 새로운 전력 MOSFET)

  • Kim, Young-Shil;Choi, Young-Hwan;Lim, Ji-Young;Cho, Kyu-Heon;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1205-1206
    • /
    • 2008
  • 본 실험에서는 CMOS 공정에서 사용하는 실리콘 트렌치 공정을 이용하여 분절된 트렌치 바디 접촉구조를 형성, 60 V급 전력 MOSFET 소자를 제작하였으며, 결과 소자의 면적을 증가시키지 않고도 제어되지 않은 유도성 스위칭 (UIS) 상황에서 낮은 전도 손실과 높은 항복 에너지 ($E_{AS}$)를 구현하였다. 분절된 트렌치 접촉구조는 소자의 사태 파괴시 n+ 소스 아래의 정공전류를 억제한다. 이는 트렌치 밑 부분에서부터 이온화 충돌이 일어나기 때문이며, 이는 기생 NPN 바이폴라 트랜지스터의 활성화를 억제하여 항복 에너지를 증가시킨다. 기존 소자의 항복 전압은 69.4 V이고 제안된 소자의 항복 전압은 60.4 V로 13% 감소하였지만, 항복 에너지의 경우, 기존소자가 1.84 mJ인데 반하여 제안된 소자는 4.5 mJ로 144 % 증가하였다. 트렌치의 분절 구조는 n+ 소스의 접촉영역을 증가시켜 온 저항을 감소시키며 트렌치 바디 접촉구조와 활성영역의 균일성을 증가시킨다.

  • PDF

Reduced Cell Pitch of Vertical Power MOSFET By Forming Source on the Trench Sidewall (트렌치 측벽에 소오스를 형성하여 셀 피치를 줄인 수직형 전력 모오스 트렌지스터)

  • Park, Il-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1550-1552
    • /
    • 2003
  • 고밀도의 트렌치 전력 MOSFET를 제작하는 데 있어서 새로운 소자의 구조와 공정을 제시하고 이차원 소자 및 공정 시뮬레이터를 이용하여 검증했다. 트렌치 게이트 MOSFET의 온-저항을 낮추기 위해 셀 피치가 서브-마이크론으로 발전할 경우 문제가 되는 소오스 영역을 확보하고자 p-base의 음 접촉을 위한 P+ 영역과 N+ 소오스 등이 트렌치의 측벽에 형성되고, 트렌치 게이트는 그 아래에 매몰된 구조를 제안했다. 시뮬레이션 결과는 항복전압이 45 V이고, 온-저항이 12.9m${\Omega}{\cdot}mm^2$로 향상된 trade-off 특성을 보였다.

  • PDF

The study of 1700V TG-IGBT(Trench Gate Insulated Gate Bipolar Transistor)'s electrical characteristics using trench ion implantation (트렌치 ion implantation을 이용한 1700V급 TG-IGBT(Trench Gate Insulate Gated Bipolar Transistor)의 전기적 특성에 관한 연구)

  • Kyoung, Sin-Su;Kim, Young-Mok;Lee, Han-Sin;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1309-1310
    • /
    • 2007
  • 본 논문에서는 IGBT 소자 중 온저항을 낮추고 집적성을 향상시키기 위해 고안된 트렌치 게이트 IGBT의 단점인 게이트 코너에서의 전계 집중현상을 완화하기 위해 P+ 베이스 영역에 트렌치 전극을 형성하고, 트렌치 바닥면에 P+ 층을 형성한 새로운 구조를 제안하고 TSUPREM과 MEDICI 시뮬레이션을 사용하여 전기적 특성을 분석하였다. 제안한 구조를 시뮬레이션한 결과 순방향 저지시에 15% 이상의 항복전압 향상을 보였으며, 이 때 온저항 특성과 문턱전압의 변화는 없었다. 전계 분포를 3차원적 시뮬레이션을 통해 트렌치 전극 바닥에 형성된 P+ 층에 의해 전계집중이 분산되는 전계분산 효과에 의해 항복전압을 향상시킴을 확인하였다. 전계분산 효과에 의한 항복전압향상은 트렌치 게이트의 코너와 트렌치 전극의 코너의 깊이가 같을수록 두 코너 사이의 거리가 가까울수록 커짐을 시뮬레이션을 통해 확인하였다. 제안 구조는 공정상 복잡성이 야기되지만 15%이상의 항복전압향상 효과는 소자 특성 개선에서 많은 응용이 기대된다.

  • PDF

Optical power enhancement of superluminescent diodes utilizing trench (Trench 구조를 이용한 단일모드형 고휘도 발광소자의 광출력 증가)

  • Yoo, Young-Chae;Han, Il-Ki;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.353-358
    • /
    • 2007
  • J-shaped superluminescent diodes (SLD) utilizing trench structure have been fabricated on the multiple quantum dots epi-structure with its ground state energy wavelength of $1.3\;{\mu}m$. It was observed that optical power was drastically increased up to 20 times in comparison with that of SLD without trench structure, The electroluminescence characteristics showed that the peak intensity of excited state was several ten times higher in the SLD with trench than without trench structure. It is explained that the optical power enhancement of J-shaped SLD with trench structure resulted from the drastic increase of peak intensity of excited state.

트렌치 게이트 Power MOSFET의 고신뢰성 게이트 산화막 형성 연구

  • Kim, Sang-Gi;Yu, Seong-Uk;Gu, Jin-Geun;Na, Gyeong-Il;Park, Jong-Mun;Yang, Il-Seok;Kim, Jong-Dae;Lee, Jin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.108-108
    • /
    • 2011
  • 최근 에너지 위기와 환경 규제 강화 및 친환경, 녹색성장 등의 이슈가 대두되면서 에너지 절감과 환경보호 분야에 그린 전력반도체 수요가 날로 증가되고 있다. 이러한 그린 전력반도체는 휴대용컴퓨터, 이동통신기기, 휴대폰, 조명, 자동차, 전동자전거, LED조명 등 다양한 종류의 전력소자들이 사용되고 있으며, 전력소자의 수요증가는 IT, NT, BT 등의 융복합기술의 발달로 새로운 분야에 전력소자의 수요로 창출되고 있다. 특히 환경오염을 줄이기 위한 고전압 대전류 전력소자의 에너지 효율을 높이는 연구 개발이 활발히 진행되고 있다. 종래의 전력소자는 평면형의 LDMOS나 VDMOS 기술을 이용한 소전류 주로 제작되어 수십 암페어의 필요한 대전류용으로 사용이 불가능하다. 반면 수직형 전력소자인 트렌치를 이용한 power 소자는 집적도를 증가 시킬 수 있을 뿐만 아니라 대전류 고전압 소자 제작에 유리하다. 특히 평면형 소자에 비해 약 30%이상 칩 면적을 줄일 수 있을 뿐만 아니라 평면형에 비해 on-저항을 낮출 수 있기 때문에 수요가 날로 증가하고 있다. 트렌치 게이트 power MOS의 중요한 게이트 산화막 형성 기술은 트렌치 내부에 균일한 두께의 산화막 형성과 높은 신뢰성을 갖는 게이트 산화막 형성이 매우 중요하다. 본 연구에서는 전력소자를 제조하기 위해 트렌치 기술을 이용하여 수직형 전력소자를 제작하였다. 트렌치형 전력소자는 게이트 산화막을 균일하게 형성하는 것이 매우 중요한 기술이다. 종래의 수평형 소자 제조시 게이트 산화막 형성 후 산화막 두께가 매우 균일하게 성장되지만, 수직형 트렌치 게이트 산화막은 트렌치 내부벽의 결정구조가 다르기 때문에 $1000^{\circ}C$에서 열산화막 성장시 결정구조와 결정면에 따라 약 35% 이상 열산화막 두께가 차이가 난다. 본 연구는 이러한 문제점을 해결하기 위해 트렌치를 형성한 후 트렌치 내부의 결정구조를 변화 및 산화막의 종류와 산화막 형성 방법을 다르게 하여 균일한 게이트 산화막을 성장시켜 산화막의 두께 균일도를 향상시켰다. 그 결과 고밀도의 트렌치 게이트 셀을 제작하여 제작된 트렌치 내부에 동일한 두께의 게이트 산화막을 여러 종류로 산화막을 성장시킨 후 성장된 트렌치 내벽의 산화막의 두께 균일도와 게이트 산화막의 항복전압을 측정한 결과 약 25% 이상 높은 신뢰성을 갖는 게이트 산화막을 형성 할 수 있었다.

  • PDF

Application of Graphene Nanoribbon Trench for C60 Fullerene Shuttle Device: Molecular Dynamics Simulations (풀러렌 셔틀 소자로 그래핀 나노리본 트렌치 응용에 관한 분자동력학 시뮬레이션 연구)

  • Kwon, Oh-Kuem;Kang, Jeong Won
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.1
    • /
    • pp.887-894
    • /
    • 2018
  • We investigated the position controlling C60 fullerene encapsulated into a graphene-nanoribbon trench via classical molecular dynamics simulations. The graphene-nanoribbon trench can provide nanoscale empty spaces, and a C60 encapsulated therein can be considered as media for a nanoelectromechanical shuttle device. The classical molecular dynamics simulations presented here provide information on the potential application of a graphene-nanoribbon trench in a C60 shuttle device. Driving forces applied to C60 resulted in its motion toward the edges of the graphene-nanoribbon trench, the suction forces induced at both edges were balanced with the driving forces, and finally, the C60 fullerene gradually settled on the edges of the graphene-nanoribbon trench after several oscillations. The results of the present simulation suggest the importance of graphene-nanoribbon trenches encapsulating fullerenes in a wide range of applications in the field of nanotechnology.

GaN Schottky Barrier Diode Employing a Trench Structure (트렌치 구조를 이용한 GaN 쇼트키 장벽 다이오드)

  • Choi, Young-Hwan;Ha, Min-Woo;Lee, Seung-Chul;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2004-2006
    • /
    • 2005
  • 트렌치 애노드 컨택을 설계하여 순방향 전압강하를 감소시키는 GaN 쇼트키 장벽 다이오드를 제안하였다. 애노드 내부에 트렌치를 설계하여 제안된 소자의 표면 애노드 컨택은 메탈 일 함수(metal work function)가 높은 Pt와 형성되며, 트렌치 애노드 컨택은 메탈 일 함수가 낮은 Au와 형성된다. 제안된 소자의 전기적 특성을 검증하기 위하여 2차원 수치 해석 시뮬레이션을 수행하였고, AlGaN/GaN 혜테로 접합 구조 위에 제작 및 측정하였다. 제안된 소자는 복잡한 공정 추가 없이 제작되며 $100A/cm^2$에서의 순방향 전압 강하는 0.73V로 기존 소자의 1.25V보다 우수한 특성을 보였다. 제안된 소자의 온 저항은 $1.58m{\Omega}cm^2$로 기존 소자의 온 저항 $8.20m{\Omega}cm^2$ 보다 낮은 장점을 가진다.

  • PDF

Electrical Characteristics of 600V Trench Gate Lateral DMOSFET Structure for Intelligent Power IC System (600V급 트렌치 게이트 LDMOSFET의 전기적 특성에 대한 연구)

  • Lee, Han-Sin;Kang, Ey-Goo;Shin, A-Ram;Shin, Ho-Hyun;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1406-1407
    • /
    • 2006
  • 본 논문에서는 기존의 250V급 트렌치 전극형 파워 MOSFET을 구조적으로 개선하여, 600V 이상의 순방향 항복 전압을 갖는 파워 MOSFET을 설계 하였다. 본 논문에서 제안한 구조로 기존의 250V급 트렌치 전극형 파워 MOSFET에 비하여 더욱 높은 순방향 항복 전압을 얻었다. 또한, 기존의 LDMOS 구조로 500V 이상의 항복 전압을 얻기 위해서 $100{\mu}m$ 이상의 크기를 필요로 했던 반면에, 본 논문에서 제안한 소자의 크기(vertical 크기)는 $50{\mu}m$로서, 소자의 소형화 및 고효율화 측면에서 더욱 우수한 특성을 얻었다. 본 논문은 2-D 공정시뮬레이터 및 소자 시뮬레이터를 바탕으로, 트렌치 옥사이드의 두께 및 폭, 에피층의 두께 변화 등의 설계변수와 이온주입 도즈 및 열처리 시간에 따른 공정변수에 대한 시뮬레이션을 수행하여, 본 논문에서 제안한 구조가 타당함을 입증하였다.

  • PDF

Design and analysis of a mode size converter composed of periodically segmented taper waveguide surrounded by trenches (좌우 트렌치를 구비한 분리 주기 테이퍼 도파로 모드 크기 변환기의 설계 및 성능 분석)

  • Park Bo Gen;Chung Young Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.43-49
    • /
    • 2004
  • In this paper, we have designed a mode size converter to reduce coupling loss between super-high delta silica optical waveguides and single mode fibers. The new mode size converter has three design aspects; periodically segmented taper waveguide for minimal size, lateral taper waveguide for simple fabrication, and surrounding trenches to improve coupling loss. In the optimal mode size converter design, coupling loss is 0.33dB/point without trenches and 0.2dB/point with trenches.