• Title/Summary/Keyword: 트러스 요소

Search Result 131, Processing Time 0.02 seconds

Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory (등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석)

  • Choi, In-Sik;Ye, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.600-606
    • /
    • 2007
  • 3D finite element analyses of a corrugated steel web girder and a steel truss web girder are conducted to investigate the static and dynamic behaviour of the hybrid girders. And the analyses results are compared with those by the equivalent beam theory. The equivalent theory is a theory that all section properties of a truss structure are replaced by section properties of a beam including a shear coefficient. When applying the equivalent beam theory, the shear coefficient of the corrugated steel web girder is estimated as the area ratio of flange section to web section and that of the steel truss web girder is calculated by the equation proposed by Abdel. Static deflections and natural frequencies by 3D finite element analyses and those by the equivalent beam theory are in good agreement.

Nonlinear Analysis of RC Members Using Truss Model (트러스 모델을 이용한 철근콘크리트 부재의 비선형해석)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.177-188
    • /
    • 2006
  • Conventional nonlinear finite element analysis requires complicated modeling and analytical technique. Furthermore, it is difficult to interpret the analytical results presented as the stress-strain relationship. In the present study, a design-oriented analytical method using the truss model was developed. A reinforced concrete member to be analyzed was idealized by longitudinal, transverse, and diagonal line elements. Basically, each element was modeled as a composite element of concrete and re-bars. Simplified cyclic models for the concrete and re-bar elements were developed. RC beams and walls with various reinforcement details were analyzed by the proposed method. The inelastic strength, energy dissipation capacity, deformability, and failure mode predicted by the proposed method were compared with those of existing experiments. The results showed that the proposed model accurately predicted the strength and energy dissipation capacities, and to predict deformability of the members, the compression-softening model used for the concrete strut element must be improved.

Determination of Initial Tension and Reference Length of Cables of Cable-Stayed Bridges (사장교의 케이블 초기장력 및 기준길이 결정에 관한 연구)

  • Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.137-146
    • /
    • 2005
  • This study presents the shape iteration method and the updated Lagrangian methods to calculate the initial tension and the reference length of cables of cable-stayed bridges. The girders and towers of cable-stayed bridge are modelled as 3-dimensional frame elements and the cable as nonlinear truss element or Ernst's cable element. Compared with the initial tensions of cables by finite element method in this study and by trial-and error method in practices, the tensions by the former are shown to be a little less than the those by the latter. The reference lengths of cables by Ernst's cable elements are almost consistent with those of cables by nonlinear truss elements. And the reference length of cables in this study are almost consistent with the arc length of beam with the same initial tension. Therefore the reference lengths of cables in cable-stayed bridges are shown to be obtained simply by the theory of beam with the initial tension calculated in this study.

Structural and Functional Measurements of a Space Truss Frame for Maintenance Works in Tunnels (터널의 유지보수공사 개선을 위한 가설 스페이스 트러스 프레임의 사용성 및 안정성 평가)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.92-98
    • /
    • 2012
  • This study shows details of a specific space truss frame structure devised to carry out maintenance and repair temporary works in tunnels. The purpose of this study is to verify structural safety and function of the innovative truss structure through an analysis tool, i.e.. ABAQUS, which is a suite of software application for finite element analysis and computer aided engineering. And then optimized size, i.e., thickness and diameter of truss members is evaluated in practice. In this study, construction methods in the temporary works are additionally represented by using the new space truss frame structure.

Stress History Evaluation for Truss Bridge with Local Damages by Using Global-Local Model Combination (전체해석과 국부해석 조합법을 이용한 국부결함이 있는 트러스교 응력이력해석)

  • Kim, Hyo-Jin;Park, Sang-il;Bae, Gi-Hoon;Lee, Sang-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • This study predicts the stress history for truss bridge with local damages by using global-local model combination method. For this end, the global structure is modeled by 3D frame elements and the selected local details are modeled by shell elements. Then superposition principle enable the global-local model to be combined interactively. Because the frame model cannot consider the rigidity of gusset plate and the interation of structural members due to the complexity of stress distribution in truss connection. The section modification factors are proposed to calibrate the stiffness of global frame element. The global-local model combination is verified by comparing the numerical results with experimental data obtained from the proof loading test to the operating truss bridge. Furthermore, stress histrories of the truss bridge are generated in the consideration of the rigidity of truss connection with local damage by using the combination method.

  • PDF

Effect of Cap Truss on Optimal Outrigger Location in Tall Building (초고층건물에서 아웃리거 구조의 최적위치에 대한 캡 트러스가 미치는 영향)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.40-49
    • /
    • 2013
  • This study purposed to investigate the optimal outrigger location in tall building with cap truss after a structural schematic design of 80 stories building was performed by using MIDAS-Gen. In this paper, the main parameters of structural analysis were the outrigger location and stiffness of main structural elements (outrigger, exterior column, shear wall etc). In order to search the optimal outrigger position in high-rise building with cap truss, we analysed and examined the lateral displacement of top floor which is one of the very important considering factors of tall building structural design. The paper results indicated that the outrigger location and the stiffness of main structural elements such as outrigger, exterior column and shear wall had an effect on the optimal outrigger location. And it is verified that the study results provided the basic engineering data for fixing the most optimal outrigger location for minimizing the lateral displacement of tall building.

Structural Stiffness Analysis on Doors having Pyramidal Truss Cores in an Urban Transit Vehicle (피라미드 트러스 심재를 채용한 도시철도차량 출입문의 구조강성평가)

  • Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.697-702
    • /
    • 2017
  • A preliminary study was carried out to investigate the feasibility of replacing honeycomb cores with pyramidal truss cores in the doors of urban transit railway vehicles. The doors in current operation are sandwich structures comprising a honeycomb core and reinforcements between two facesheets. The structural requirements of doors for urban transit vehicle are specified in the KRS and KRT and standards, according to which the deflections from three-point bending tests must be limited. To this end, two types of pyramidal truss cores with equivalent mass to a honeycomb core were designed. The structural stiffness of doors with pyramidal truss cores and honeycomb cores were numerically calculated via finite element analysis. The three-point bending models were constructed and simulated, and then the calculated deflections were compared with the requirements specified in the regulations. The results show that doors with pyramidal truss cores satisfied the stiffness requirements, although their deflections were 2.5% larger than that of the honeycomb cores. Therefore, the pyramidal truss cores could replace the aluminum honeycomb cores, and their multi-functional capability could be exploited.

Diagnostics of Truss Structures via Vibration Monitoring (진동감시를 통한 트러스 구조물의 진단)

  • Park, Soo-Yong;Kim, Jeong-Tae;Kim, Yeon-Bok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.63-74
    • /
    • 2001
  • In this paper the feasibility of Nondestructive Damage Detection (NDD) in large structures is demonstrated via simulating vibration monitoring of such structures. The theory of NDD for truss type structures is formulated. To examine the feasibility of the theory, a finite element model of a 3-D truss structure, which consists of sixteen bays and includes 246 elements, is developed to simulate damage. Four damage cases are simulated numerically and the cases range from the structure being damaged in one location to the structure being damaged in three locations. For the given modal parameters, this study reveals very good results for small amounts of damage as well as large damage.

  • PDF

Determination of the Boundary of Parameters for Stabilization of Truss Structures Stabilized by Cable Tension (장력안정트러스 구조물의 안정화를 위한 매개변수의 범위 결정에 관한 연구)

  • 권택진;한상을;최옥훈
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 1997
  • The charateristics of stabilization for stabilized truss unit-structures with cable and truss are investigated in this paper. This unit system is composed of a central post and eight cables, and is connected by hinge joints, and stabilized by self-equilibrated stress field. As this unit structure itself is a statically closed and stabilized system individually, it can be employed to assemble structures with various configurations. In this study, for stabilization of truss structures stabilized by cable tension, the structural concept of unit structures, the range of various geometrical parameters and the relationship of governing parameters about unit systems are explained.

  • PDF

Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure (트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.347-352
    • /
    • 2012
  • This paper presents a robotic foot mechanism based on truss structure for walking robots and analyzes its effectiveness for compliant walking. The specified foot mechanism has been modeled by observing the structure and behavior of human foot. The frame of bone used in the human foot is considered as a truss, and the ligaments of the human foot are represented as a simple stiffness element. So such a robotic foot has an advantage to moderate the impact of foot when a walking robot takes a step. As a result, it is practically expected that the proposed robotic foot mechanism can contribute to reduce the physical fatigue of walking robots.