• Title/Summary/Keyword: 투사각도

Search Result 33, Processing Time 0.036 seconds

Comparison Study on Projection and Backprojection Methods for CT Simulation (투사 및 역투사 방법에 따른 컴퓨터단층촬영 영상 비교)

  • Oh, Ohsung;Lee, Seung Wook
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.323-330
    • /
    • 2014
  • Image reconstruction is one of the most important processes in CT (Computed tomography) technology. For fast scanning and low dose to the objects, iterative reconstruction is becoming more and more important. In the implementation of iterative reconstruction, projection and backprojection processes are considered to be indispensable parts. However, many approaches for projection and backprojection may result severe image artifacts due to their discrete characteristics and affects the reconstructed image quality. Thus, new approaches for projection and backprojection are highly demanded these days. In this paper, distance-driven approach was evaluated and compared with other conventional methods. The numerical simulator was developed to make the phantoms, and projection and backprojection images were compared using these approaches. As a result, it turned out that there are less artifacts during projection and backprojection in parallel and fan beam geometry.

Kinematic Characteristics of the Thrower's COM and the Shot in Shot Put : The Woman Record Holder of Korea (포환던지기 동작 시 포환과 신체 무게중심의 운동학적 특성 : 한국 여자 기록보유자를 대상으로)

  • Lee, Dong-Jin;Cho, Byung-Jun;Lee, Myung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5148-5154
    • /
    • 2012
  • The purpose of this study was to analyze the kinematic characteristics of the thrower's center of mass (COM) and the shot that her performance hits record high for the 29th National Athletic Competition. Two S-VHS video cameras were used to visualize. The Direct Linear Transformation technique was employed to paint a clear picture in the three dimensional coordination. Kwon3D was used to analyze the data. The results showed that release velocity and height were 13.73 m/s and 198.6 cm(119% by height ratio), respectively, which is considered as peak performance comparing an extensive review of previous literature on the shot put. Release angle was $34^{\circ}$, which is lower than the previous studies. The path of thrower's center of mass is needed to travel in a release direction during the flight phase. The vertical movement of the thrower's center of mass during the driving should be controlled. At release, the perfact timing is required without vertical and horizontal movements of the thrower's center of mass.

Seamless Viewing Control by User Movement Between Pyramid Sections in Desktop 3D Hologram Pyramid (데스크톱 3D 홀로그램 피라미드에서 피라미드 단면 사이 사용자 이동에 따른 끊김 없는(seamless viewing control) 뷰 생성)

  • Hwang, Sun-Ju;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • The hologram pyramid is an application of floating holograms, allowing the observer to see three-dimensional holograms from various angles without wearing wearable devices. Due to the low cost and ease of manufacturing, it has been used in a wide variety of fields as diverse as education, prototyping, showcase, and etc. But, when the observer looks at the hologram from the place where each side of the hologram pyramid is connected, the hologram looks cut and distorted. Also, the observer can see the only hologram of angles viewed head-on from each side. In this paper, we propose a method of generating a hologram image corresponding to the observer's gaze angle by tracking the observer's position and conducting reverse distortion. It provide a hologram of the angle viewed by the observer without cutting and distortion. In addition, the existing method and the proposed method were applied and compared in the hologram pyramid.

Design and Analysis of a Laser Lift-Off System using an Excimer Laser (엑시머 레이저를 사용한 LLO 시스템 설계 및 분석)

  • Kim, Bo Young;Kim, Joon Ha;Byeon, Jin A;Lee, Jun Ho;Seo, Jong Hyun;Lee, Jong Moo
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Laser Lift-Off (LLO) is a process that removes a GaN or AIN thin layer from a sapphire wafer to manufacture vertical-type LEDs. It consists of a light source, an attenuator, a mask, a projection lens and a beam homogenizer. In this paper, we design an attenuator and a projection lens. We use the 'ZEMAX' optical design software for analysis of depth of focus and for a projection lens design which makes $7{\times}7mm^2$ beam size by projecting a beam on a wafer. Using the 'LightTools' lighting design software, we analyze the size and uniformity of the beam projected by the projection lens on the wafer. The performance analysis found that the size of the square-shaped beam is $6.97{\times}6.96mm^2$, with 91.8 % uniformity and ${\pm}30{\mu}m$ focus depth. In addition, this study performs dielectric coating using the 'Essential Macleod' to increase the transmittance of an attenuator. As a result, for 23 layers of thin films, the transmittance total has 10-96% at angle of incidence $45-60^{\circ}$ in S-polarization.

Mega Irises: Per-Pixel Projection Illumination Compensation for the moving participant in projector-based visual system (Mega Irises: 프로젝터 기반의 영상 시스템상에서 이동하는 체험자를 위한 화소 단위의 스크린 투사 밝기 보정)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.31-40
    • /
    • 2011
  • Projector-based visual systems are widely used for VR and experience display applications. But the illumination irregularity on the screen surface due to the screen material and its light reflection properties sometimes deteriorates the user experience. This phenomenon is particularly troublesome when the participants of the head tracking VR system such as CAVE or the motion generation experience system continually move around the system. One of reason to illumination irregularity is projector-screen specular reflection component to participant's eye's position and it's analysis needs high computation complexity. Similar to calculate specular lighting term using GPU's programmable shader, Our research adjusts every pixel's brightness in runtime with given 3D screen space model to reduce illumination irregularity. For doing that, Angle-based brightness compensate function are considered for specific screen installation and modified it for GPU-friendly compute and access. Two aspects are implemented, One is function access transformation from angular form to product and the other is piecewise linear interpolate approximation.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Grid Angle Optimization and Grid Artifact Reduction in Digital Radiography Images Based on the Modulation Model (디지털 방사선 영상에서 그리드 각도의 최적화와 변조 모델에 기초한 그리드 왜곡의 제거)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.30-41
    • /
    • 2011
  • In order to obtain more clear x-ray images, an antiscatter grid, which can absorb the scattered rays, is employed. In the high-resolution direct digital radiography, however, the artifacts due to the grid are visible. In this paper, within the methods of obtaining x-ray digital images by employing the rotated grids for the facility of grid artifact reduction, the previous work, where the frequencies of the artifact components on the boundary, is further analyzed and extended, and a min-max optimization for a given grid density is proposed. For practical grid densities, appropriate grid angles are provided and a grid artifact reduction algorithm is proposed for the appropriate grid angles. The proposed algorithm is tested for real x-ray digital images with a comparison, and can remove the grid artifacts while maintaining the resolution of the original image.

Stabilized 3D Pose Estimation of 3D Volumetric Sequence Using 360° Multi-view Projection (360° 다시점 투영을 이용한 3D 볼류메트릭 시퀀스의 안정적인 3차원 자세 추정)

  • Lee, Sol;Seo, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.76-77
    • /
    • 2022
  • In this paper, we propose a method to stabilize the 3D pose estimation result of a 3D volumetric data sequence by matching the pose estimation results from multi-view. Draw a circle centered on the volumetric model and project the model from the viewpoint at regular intervals. After performing Openpose 2D pose estimation on the projected 2D image, the 2D joint is matched to localize the 3D joint position. The tremor of 3D joints sequence according to the angular spacing was quantified and expressed in graphs, and the minimum conditions for stable results are suggested.

  • PDF

Analysis of Dose Reduction Rate with Dose Modulation Technic Depending on BMI (PET/CT검사에서 Dose Modulation Technic 적용시 BMI에 따른 선량 감소율 분석)

  • Kim, Jung Wook;Park, Se Yun;Jo, Young Jun;Park, Jong Yeop
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.25-28
    • /
    • 2012
  • Purpose : It is important to reduce radiation dose associated with computed tomography (CT) scanning to as low as reasonably achievable (ALARA). With Dose Modulation Technic, user select a desired image quality and the system adapts tube current to obtain the desired image quality with greater radiation dose efficiency. In this paper, we presents a comprehensive description of fundamentals, clinical applications and radiation dose benefits of Dose Modulation Technic depending on Body Mass Index(BMI). Materials and Methods : In this study, 149 patients were examined(The mean age : $58{\pm}12.4$ years old). Biograph True Point 40 (Siemens, USA) and Gemini TF 64 (Philips. Cleveland) were used for equipment. When we used Care Dose 4D (Siemens, USA) and D-dom (Philips, Cleveland), we measured dose reduction and Computed Tomography Dose Index (CTDI) depending on BMI. Then we analyze data using SPSS Ver.18. Results : When we used Care Dose 4D, p-value is considered statistically significant by groups with the result that we compared Care Dose 4D with D-dom. On the other hand, p-value isn't considered statistically significant by groups using D-dom. Conclusion : Dose modulation based on the projection angle didn't affect degree of obesity. And When using Care Dose 4D, dose reduction rate in the normal patients were higher than the obese. In this study, there are errors on somato type. So I think more research have to be done. Then application of Dose Modulation technic can help in maintaining acceptable image quality while reducing radiation dose by 20-60% in most instances.

  • PDF

Optimizing Imaging Conditions in Digital Tomosynthesis for Image-Guided Radiation Therapy (영상유도 방사선 치료를 위한 디지털 단층영상합성법의 촬영조건 최적화에 관한 연구)

  • Youn, Han-Bean;Kim, Jin-Sung;Cho, Min-Kook;Jang, Sun-Young;Song, William Y.;Kim, Ho-Kyung
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 2010
  • Cone-beam digital tomosynthesis (CBDT) has greatly been paid attention in the image-guided radiation therapy because of its attractive advantages such as low patient dose and less motion artifact. Image quality of tomograms is, however, dependent on the imaging conditions such as the scan angle (${\beta}_{scan}$) and the number of projection views. In this paper, we describe the principle of CBDT based on filtered-backprojection technique and investigate the optimization of imaging conditions. As a system performance, we have defined the figure-of-merit with a combination of signal difference-to-noise ratio, artifact spread function and floating-point operations which determine the computational load of image reconstruction procedures. From the measurements of disc phantom, which mimics an impulse signal and thus their analyses, it is concluded that the image quality of tomograms obtained from CBDT is improved as the scan angle is wider than 60 degrees with a larger step scan angle (${\Delta}{\beta}$). As a rule of thumb, the system performance is dependent on $\sqrt{{\Delta}{\beta}}{\times}{\beta}^{2.5}_{scan}$. If the exact weighting factors could be assigned to each image-quality metric, we would find the better quantitative imaging conditions.