Optimizing Imaging Conditions in Digital Tomosynthesis for Image-Guided Radiation Therapy

영상유도 방사선 치료를 위한 디지털 단층영상합성법의 촬영조건 최적화에 관한 연구

  • Youn, Han-Bean (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Jin-Sung (Department of Radiation Oncology, Samsung Medical Center) ;
  • Cho, Min-Kook (School of Mechanical Engineering, Pusan National University) ;
  • Jang, Sun-Young (School of Mechanical Engineering, Pusan National University) ;
  • Song, William Y. (Department of Radiation Oncology, University of California San Diego) ;
  • Kim, Ho-Kyung (School of Mechanical Engineering, Pusan National University)
  • 윤한빈 (부산대학교 기계공학부) ;
  • 김진성 (삼성서울병원 방사선종양학과) ;
  • 조민국 (부산대학교 기계공학부) ;
  • 장선영 (부산대학교 기계공학부) ;
  • 송영재 (UC 샌디에고 방사선종양학과) ;
  • 김호경 (부산대학교 기계공학부)
  • Received : 2010.07.05
  • Accepted : 2010.08.10
  • Published : 2010.09.30

Abstract

Cone-beam digital tomosynthesis (CBDT) has greatly been paid attention in the image-guided radiation therapy because of its attractive advantages such as low patient dose and less motion artifact. Image quality of tomograms is, however, dependent on the imaging conditions such as the scan angle (${\beta}_{scan}$) and the number of projection views. In this paper, we describe the principle of CBDT based on filtered-backprojection technique and investigate the optimization of imaging conditions. As a system performance, we have defined the figure-of-merit with a combination of signal difference-to-noise ratio, artifact spread function and floating-point operations which determine the computational load of image reconstruction procedures. From the measurements of disc phantom, which mimics an impulse signal and thus their analyses, it is concluded that the image quality of tomograms obtained from CBDT is improved as the scan angle is wider than 60 degrees with a larger step scan angle (${\Delta}{\beta}$). As a rule of thumb, the system performance is dependent on $\sqrt{{\Delta}{\beta}}{\times}{\beta}^{2.5}_{scan}$. If the exact weighting factors could be assigned to each image-quality metric, we would find the better quantitative imaging conditions.

최근 디지털 단층영상합성법을 영상유도 방사선 치료에 활용하기 위한 연구가 활발히 시도되고 있다. 적은 수의 투사영상으로 삼차원 영상재구성이 가능하기 때문에 환자에 대한 피폭선량을 줄일 수 있으며, 환자의 움직임을 최소화할 수 있는 장점이 있기 때문이다. 그러나 단층영상의 화질이 스캔 각도(${\beta}_{scan}$) 및 사용한 투사영상의 수 등 촬영조건에 크게 의존하는 단점이 있다. 본 연구에서는 필터링 후 역투사법을 이용한 디지털 단층영상합성의 구현에 대해 자세히 논하였으며, 이에 대한 최적 촬영조건에 대해 살펴 보았다. 이를 위해 시스템 성능을 신호 대 잡음비, 잔상퍼짐함수, 연산횟수를 조합한 이득함수로 정의하였으며, 다양한 촬영조건에 대해 실험을 통해 각 지표를 구한 후 평가하였다. 평가 결과 및 분석으로부터 큰 단위 스캔 각도(${\Delta}{\beta}$)로 60도 이상의 넓은 범위에 걸쳐 스캔을 할수록 높은 화질의 단층영상을 얻을 수 있다는 결론을 얻었다. 대략적으로 시스템 성능이 $\sqrt{{\Delta}{\beta}}{\times}{\beta}^{2.5}_{scan}$에 비례하였다. 만약 각 평가지표에 명확한 가중치를 부여할 수 있다면 보다 엄밀하고 구체적인 촬영조건을 구할 수 있을 것이다.

Keywords

References

  1. Kim JS, Cho MK, Cho YB, et al: Geometric calibration of cone-beam CT system for image guided proton therapy. Korean J Med Phys 19:209-218 (2008)
  2. Cho MK, Kim JS, Cho YB, et al: CBCT/CBDT with the equipped x-ray projection system for image-guided proton therapy. Proc SPIE 7258:2V1-2V8 (2009)
  3. Allison R, Gay H, Mota H, Sibata H: Image-guided radiation therapy: current and future directions. Future Oncol 2:477-492 (2006) https://doi.org/10.2217/14796694.2.4.477
  4. Dawson LA, Jaffray DA: Advances in image-guided radiation therapy. J Clin Oncol 25:938-946 (2007) https://doi.org/10.1200/JCO.2006.09.9515
  5. Islam M, Purdie T, Norrlinger B, Alasti H: Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33:1573-1582 (2006) https://doi.org/10.1118/1.2198169
  6. Dobbins J, Godfrey DJ: Digital x-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65-R106 (2003) https://doi.org/10.1088/0031-9155/48/19/R01
  7. Godfrey DJ, Yin F, Oldham M, Yoo S: Digital tomosynthesis with an on-board kilovoltage imaging device. Int J Radiat Oncol 65:8-15 (2006) https://doi.org/10.1016/j.ijrobp.2006.01.025
  8. Dobbins J: Tomosynthesis imaging: at a translational crossroads. Med Phys 36:1956-1967 (2009) https://doi.org/10.1118/1.3120285
  9. Flynn MJ, McGee R, Blechinger J: Spatial resolution of x-ray tomosynthesis in relation to computed tomography for coronal/sagittal images of the knee. Proc SPIE 6510: 0D1-0D9 (2007)
  10. Feldkamp LA, Davis LC, Kress JW: Practical cone-beam algorithm. J Opt Soc Am A 1:612-619 (1984) https://doi.org/10.1364/JOSAA.1.000612
  11. Lauritsh C, Haorer WH: A theoretical framework for filtered backprojection in tomosynthesis. Proc SPIE 3338:1127-1137 (1998)
  12. Zhou J, Zhao B, Zhao W: A computer simulation platform for the optimization of a breast tomosynthesis system. Med Phys 34:1098-1109 (2007) https://doi.org/10.1118/1.2558160
  13. Barrett HH, Myers KJ: Foundations of Imaging Science. Wiley Interscience, NJ (2004), pp. 730-734
  14. Gonzalez RC, Woods RE, Eddins SL: Digital Image Processing. Pearson Prentice Hall, NJ (2004), pp. 208-213