• Title/Summary/Keyword: 통신재난

Search Result 642, Processing Time 0.027 seconds

New Middle Powers' ODA: Korean Aid Strategy for Economic Infrastructure and Production Sector Building (신흥 중견국가의 공적개발원조: 한국의 경제 시설 및 생산 분야 중점지원 전략)

  • Jang Ji-Hyang
    • Journal of International Area Studies (JIAS)
    • /
    • v.14 no.3
    • /
    • pp.421-440
    • /
    • 2010
  • This paper examines middle powers' ODA policy in the post cold war era and discusses its implication for Korean aid strategy. Middle powers' ODA has been more successful than that of super powers in promoting donors' positive images and in stimulating recipient countries' development. Middle powers tend to pursue multilateral solutions to international problems often by taking a mediator role, and their ODA policies set them apart from the great players in international politics. Middle powers' ODA is primarily aimed at reducing poverty and protecting human rights in least developed countries where humanitarian aid needs the most rather than promoting donors' interests. Also, middle powers have provided bilateral untied aid in the sectors of food aid and emergency relief and steadily devoted about 0.7% of their gross national income to ODA. Meanwhile, Korea as an emerging middle power and a new donor has been implementing its own aid strategy under the name of the Korean development model since the post cold war period. The Korean ODA was not successful in building donors' positive images by simply following the short term strategies of US and Japan. Yet, its ODA policy has been quite effective in sustaining local development by creating specific niches in which the country can specialize in. In specific, Korea has focused on developing the sectors of information and communication technology and industry energy in recipients' countries by maximizing its comparative advantage.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF

Flood Disaster Prediction and Prevention through Hybrid BigData Analysis (하이브리드 빅데이터 분석을 통한 홍수 재해 예측 및 예방)

  • Ki-Yeol Eom;Jai-Hyun Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 2023
  • Recently, not only in Korea but also around the world, we have been experiencing constant disasters such as typhoons, wildfires, and heavy rains. The property damage caused by typhoons and heavy rain in South Korea alone has exceeded 1 trillion won. These disasters have resulted in significant loss of life and property damage, and the recovery process will also take a considerable amount of time. In addition, the government's contingency funds are insufficient for the current situation. To prevent and effectively respond to these issues, it is necessary to collect and analyze accurate data in real-time. However, delays and data loss can occur depending on the environment where the sensors are located, the status of the communication network, and the receiving servers. In this paper, we propose a two-stage hybrid situation analysis and prediction algorithm that can accurately analyze even in such communication network conditions. In the first step, data on river and stream levels are collected, filtered, and refined from diverse sensors of different types and stored in a bigdata. An AI rule-based inference algorithm is applied to analyze the crisis alert levels. If the rainfall exceeds a certain threshold, but it remains below the desired level of interest, the second step of deep learning image analysis is performed to determine the final crisis alert level.

Perception Survey for Demonstration Service using Drones (드론을 활용한 실증 서비스에 대한 인식 조사)

  • Jina Ok;Soonduck Yoo;Hyojin Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • The purpose of this study is to discover a drone utilization model tailored to local characteristics, propose directions for building a drone demonstration city based on demand surveys for drone activation, and suggest ways to utilize and support a drone application system. First, according to the survey results, there was a high understanding of and necessity for drone demonstration projects, particularly in addressing urban issues, which were deemed to have a significant impact. Second, based on the analysis of priorities and short- and long-term approaches, disaster-related tasks were evaluated as a priority, requiring an approach through medium- to long-term strategies. Third, it was noted that budgetary considerations emerged as the most critical issue during project implementation. Practitioners and experts expressed willingness to actively introduce drone-based technologies into their work when budget and technology were ready. Budgetary constraints were identified as the most significant obstacle to proper implementation, emphasizing the need for resolution. Fourth, the necessity of demand surveys during project development was identified in certain areas. Demand surveys were deemed essential for drone-based demonstration city construction, and a survey indicated that public leadership in this regard was also necessary. Fifth, concerning approaches in specific areas, the field of safety and disaster management was highlighted as the most crucial for application.

A Study on the Governance of U.S. Global Positioning System (미국 글로벌위성항법시스템(GPS)의 거버넌스에 관한 연구 - 한국형위성항법시스템 거버넌스를 위한 제언 -)

  • Jung, Yung-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.127-150
    • /
    • 2020
  • A Basic Plan for the Promotion of Space Development (hereinafter referred to as "basic plan"), which prescribes mid- and long-term policy objectives and basic direction-setting on space development every five years, is one of the matters to be deliberated by the National Space Committee. Confirmed February 2018 by the Committee, the 3rd Basic Plan has a unique matter, compared to the 2nd Basic Plan. It is to construct "Korean Positioning System(KPS)". Almost every country in the world including Korea has been relying on GPS. On the occasion of the shooting down of a Korean Air flight 007 by Soviet Russia, GPS Standard Positioning Service has been open to the world. Due to technical errors of GPS or conflict of interests between countries in international relations, however, the above Service can be interrupted at any time. Such cessation might bring extensive damage to the social, economic and security domains of every country. This is why some countries has been constructing an independent global or regional satellite navigation system: EU(Galileo), Russia(Glonass), India(NaVic), Japan(QZSS), and China(Beidou). So does South Korea. Once KPS is built, it is expected to make use of the system in various areas such as transportation, aviation, disaster, construction, defense, ocean, distribution, telecommunication, etc. For this, a pan-governmental governance is needed to be established. And this governance must be based on the law. Korea is richly experienced in developing and operating individually satellite itself, but it has little experience in the simultaneous development and operation of the satellites, ground, and users systems, such as KPS. Therefore we need to review overseas cases, in order to minimize trial and error. U.S. GPS is a classic example.

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

3D GIS Network Modeling of Indoor Building Space Using CAD Plans (CAD 도면을 이용한 건축물 내부 공간의 3차원 GIS 네트워크 모델링)

  • Kang Jung A;Yom Jee-Hong;Lee Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • Three dimensional urban models are being increasingly applied for various purposes such as city planning, telecommunication cell planning, traffic analysis, environmental monitoring and disaster management. In recent years, technologies from CAD and GIS are being merged to find optimal solutions in three dimensional modeling of urban buildings. These solutions include modeling of the interior building space as well as its exterior shape visualization. Research and development effort in this area has been performed by scientists and engineers from Computer Graphics, CAD and GIS. Computer Graphics and CAD focussed on precise and efficient visualization, where as GIS emphasized on topology and spatial analysis. Complementary research effort is required for an effective model to serve both visualization and spatial analysis purposes. This study presents an efficient way of using the CAD plans included in the building register documents to reconstruct the internal space of buildings. Topological information was built in the geospatial database and merged with the geometric information of CAD plans. as well as other attributal data from the building register. The GIS network modeling method introduced in this study is expected to enable an effective 3 dimensional spatial analysis of building interior which is developing with increasing complexity and size.

Dangerous Area Prediction Technique for Preventing Disaster based on Outside Sensor Network (실외 센서네트워크 기반 재해방지 시스템을 위한 위험지역 예측기법)

  • Jung, Young-Jin;Kim, Hak-Cheol;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.775-788
    • /
    • 2006
  • Many disaster monitoring systems are constantly studied to prevent disasters such as environmental pollution, the breaking of a tunnel and a building, flooding, storm earthquake according to the progress of wireless telecommunication, the miniaturization of terminal devices, and the spread of sensor network. A disaster monitoring system can extract information of a remote place, process sensor data with rules to recognize disaster situation, and provide work for preventing disaster. However existing monitoring systems are not enough to predict and prevent disaster, because they can only process current sensor data through utilizing simple aggregation function and operators. In this paper, we design and implement a disaster prevention system to predict near future dangerous area through using outside sensor network and spatial Information. The provided prediction technique considers the change of spatial information over time with current sensor data, and indicates the place that could be dangerous in near future. The system can recognize which place would be dangerous and prepare the disaster prevention. Therefore, damage of disaster and cost of recovery would be reduced. The provided disaster prevention system and prediction technique could be applied to various disaster prevention systems and be utilized for preventing disaster and reducing damages.

Developing algorithms for providing evacuation and detour route guidance under emergency conditions (재난.재해 시 대피 및 우회차량 경로 제공 알고리즘 개발)

  • Yang, Choong-Heon;Son, Young-Tae;Yang, In-Chul;Kim, Hyun-Myoung
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2009
  • The transportation network is a critical infrastructure in the event of natural and human caused disasters such as rainfall, snowfall, and terror and so on. Particularly, the transportation network in an urban area where a large number of population live is subject to be negatively affected from such events. Therefore, efficient traffic operation plans are required to assist rapid evacuation and effective detour of vehicles on the network as soon as possible. Recently, ubiquitous communication and sensor network technology is very useful to improve data collection and connection related emergency information. In this study, we develop a specific algorithm to provide evacuation route and detour information only for vehicles under emergency situations. Our algorithm is based on shortest path search technique and dynamic traffic assignment. We perform the case study to evaluate model performance applying hypothetical scenarios involved terror. Results show that the model successfully describe effective path for each vehicle under emergency situation.

  • PDF

Status of Ocean Observation using Wave Glider (무인해상자율로봇(Wave Glider)을 이용한 해양관측 현황)

  • Son, Young Baek;Moh, Taejun;Jung, Seom-Kyu;Hwnag, Jae Dong;Oh, Hyunju;Kim, Sang-Hyun;Ryu, Joo-Hyung;Cho, Jin Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.419-429
    • /
    • 2018
  • An unmanned autonomous maritime surface system can move the vehicle to the areas for observing the ocean accidents, disasters, and severe weather conditions. Detection and monitoring technologies have been developed by the converging of the regional and local surveillance system. Wave Glider, one of the autonomous maritime surface systems, is ocean-wave propelled autonomous surface vehicle and controlled using Iridium satellite communication. In this study, we carried out two-time Wave Glider observations for 2016 and 2017 summer in the East China Sea that the area was influenced by low-salinity water. We observed the sea surface warming effect due to the low-salinity water using the regional (satellite) and local (Wave Glider) surveillance system. We also monitored the effect of the typhoon and understood the change of the ocean-atmosphere environments in real-time. New unmanned surface system with autonomous system and high endurance structure can measure comprehensively and usefully a long observation in complicated ocean environments because of connecting with other surveillance systems.