• Title/Summary/Keyword: 토양 세척

Search Result 229, Processing Time 0.028 seconds

A Study on the Cleanup fur Diesel-Contaminated Soil by Micro-Bubble Enhanced Soil Washing Process (미세기포를 이용한 토양세척기법의 디젤 오염토양 정화에 관한 연구)

  • 조장환;장윤영;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • The treatment of petroleum contaminated soil requires various physico-chemical remediation technologies which are efficient in time and can reduce the possibility of secondary contamination by themselves In this study, an innovated soil washing process was proposed to treat the diesel-contaminated soil. Micro-bubbles, which were generated by hydrogen peroxide, deserted and floated the contaminants. Soils less than #60(0.25mm) were artificially contaminated by 6,500mg TPH/kg dry soil initially. The process was examined for pH, the soil to water mixing ratio, concentration of $H_2O$$_2$, and contacting times. In the case of less than #60 soil, maximum removal efficiency(60%) was obtained at pH 12. 1.0% hydrogen peroxide, and 1 : 5 soil to water mixing ratio for 1 hour.

  • PDF

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

Effect of Water-Thoroughly-Rinsing in the Artificially Metal-Contaminated Soil Preparation on Final Soil Metal Concentrations (인위적 중금속 오염 토양 제조과정에서 최종 세척과정이 중금속 토양 농도에 미치는 영향 연구)

  • Hur, Jeong-Hyun;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.670-676
    • /
    • 2011
  • Artificially metal-contaminated soils have been widely used for lab-scale soil washing and soil toxicity experiments. The artificial soil contamination methods consist of 1) first equilibrating soils with heavy metal solution, 2) filtrating or centrifuging soils from the mixture and 3) finally drying the soils. However, some of those artificially contaminated soil experiments have not clearly shown that the soils were thoroughly rinsed with water prior to conducting experiments. This study investigated the amount of heavy metal release from the artificially metal-contaminated soil by pre-water-rinsing. Three different artificially metal-contaminated soil preparation methods were first evaluated with Cd and Pb concentrations of soil. Then, this study investigated the effect of pre-water-rinsing on the Cd and Pb concentration of the artificially contaminated soil. Heavy metal concentrations of the soil produced by equilibrating and drying the metal solution-soil were significantly reduced by pre-water-rinsing. The results of the study implied that experimental results would be significantly distorted when the artificially heavy metal-contaminated soils were not thoroughly water-rinsed prior to conducting experiments. Therefore, the initial heavy metal concentration of the artificially contaminated soil should be determined after thoroughly rinsing the soil that was previously obtained through the adsorption and dry stages.

A Study on Remediation of Diesel-Contaminated Soil by Biosurfactant- Enhanced Soil Washing (생물계면활성제를 이용한 디이젤 오염토양세척기술에 관한 연구)

  • 문혜준;임영경;김윤관;주춘성;방기연;정욱진;이승우
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2002
  • Soil washing by surfactants is a technology to enhance mobilization and subsequent degradation of oil pollutants by reducing the surface tension of pollutants which is combined with soil. In this study, biosurfactant, rhamnolipid was produced from Pseudomonas aemginosa ATCC 9027 which had an excellent biodegradable activity in soil without causing secondary pollution. Effects of chemical surfactants on the removal of diesel from diesel-contaminated soil were compared to those of biosurfactants including rhamnolipid. Diesel removal efficiency by rhamnolipid extracted from P. aeruginosa culture broth was over 95% in both batch and column washing test in 5,000ppm diesel-contaminated soil with 1% surfactants after washing for 24 hours. On the contrary, the results of chemical surfactants were below 50∼80%, The chemical surfactants with HLB value(8∼15) showed more then 75% efficiency of diesel removal. But, when the HLB values were below 8 or over 15. their efficiency were observed as less then 60% of diesel removal. Rhamnolipid, biologically produced surfactants, may also be promising agent for enhancing diesel removal from contaminated soil.

Remediation of Pb-Contaminated Soil by Soil Washing using Hdrochloric Acid (염산을 사용한 납 오염 토양의 토양 세척에 의한 정화)

  • Baek, Ki-Tae;Kim, Do-Hyung;Seo, Chang-Il;Yang, Jung-Seok;Lee, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.17-22
    • /
    • 2007
  • The feasibility of soil washing was investigated to remediate Pb-contaminated field soil. Hydrochloric acid was used as a washing agent. As mixing time increased from 5 min to 120 min, removal efficiency of Pb from contaminated soil increased from 69.3% to 81.9%. Two times washing with 0.2 M HCl showed 96% removal efficiency even at mixing time of 10 min. The Pb content in soil increased sharply as particle size of soil decreased, and removal efficiency was highly dependent on mixing time and temperature. Based on this result, acid washing technologies can be applied to remediate the Pb-contaminated soil used in this study.

Application of the Nonionic Surfactant-enhanced Soil Washing to the Kuwait Soil Seriously Contaminated with the Crude Oil (원유로 심하게 오염된 쿠웨이트 토양 정화를 위한 비이온 계면활성제의 토양세척법 적용)

  • Heo, Hyojin;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.491-500
    • /
    • 2015
  • Batch experiments were performed to determine the feasibility of the surfactant-enhanced soil washing process at various washing conditions for the Kuwait soil seriously contaminated with the crude oil. The soil was sampled at a dried oil pond in Kuwait and its average TPH concentration was 223,754 mg/kg, which was too high to apply the conventional remediation process. Nine commercialized non-ionic surfactants were used for the batch experiment to measure the surfactant solubility for the crude oil because it was reported that they have worked for the soil remediation. Among them, three surfactants having high crude oil solubility were used for the soil washing experiment. From the result of batch experiment, 5% TritonX-100 washing solution showed the highest TPH removal efficiency (67%) for the crude oil contaminated soil. However, because the residual TPH concentration in the washed soil was still higher than the clean-up level in Kuwait (10,000 mg/kg), the repeated soil washing was performed. After five washings with 2% surfactant solution, the cumulative TPH removal efficiency was higher than 96% and the residual TPH concentration in the soil went down below the clean-up level. To measure the desorption capacity of TritonX-100 remained in the soil after the soil washing, the silica beads and the soil were washed five times with 2% TritonX-100 surfactant solution and then they were washed again with distilled water to detach the surfactant adsorbed on beads or soil. After five washings with surfactant solution, 7.8% and 19.6% of the surfactant was adsorbed on beads and soil, respectively. When additionally washed with distilled water, most of the residual surfactant were detached from beads and only 4.3% of surfactant was remained in soil. From the results, it was investigated that the surfactant-enhanced soil washing process with TritonX-100, Tergitol S-15-7, and Tergitol S-15-9 has a great capability for the remediation of the Kuwait soil seriously contaminated by crude oil (more than 220,000 mg/kg).

Soil Washing and Effluent Treatment for Contaminated Soil with Toxic Metals (유해원소로 오염된 토양 세척 및 세척수의 처리)

  • Yang, Jung-Seok;Hwang, Jin-Min;Baek, Kitae;Kwon, Man Jae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.745-754
    • /
    • 2013
  • This study evaluated the optimal soil washing conditions for toxic metals considering the removal efficiency of toxic metals from contaminated soils as well as from soil washing effluents. In the contaminated soils, As was the major contaminant and extracted by sodium hydroxide solution better than by sulfuric acid. However, in the case of the treatment of soil washing effluents, sodium hydroxide was less effective extractant because soil organic matter extracted by sodium hydroxide prevented the solid-liquid phase separation and toxic metal removal. In the treatment of soil washing effluents with sulfuric acid, toxic metals in the effluents were mostly precipitated at the pH above 6.5. In addition, granular ferric oxide (GFO) as an adsorbent enhanced the removal of As and Pb indicating that toxic metals in the washing effluents can be removed almost completely by the use of combined adsorption-neutralization process. This study suggests that soil washing techniques for toxic metals should be optimized based on the physical and chemical properties of the contaminated soils, the nature of chemical extractant, and the removal efficiency and effectiveness of toxic metals from the soils as well as soil washing effluents.

A Study on Optimal Conditions for Washing the Heavy Metal Polluted Soil in Ka-hak Mine (가학광산 중금속 오염토양의 세척 최적조건 연구)

  • Kim, Teayoup;Park, Jayhyun;Park, Juhyun
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.517-526
    • /
    • 2018
  • In order to remove pollutants from the soil in the Ka-hak mine site, this study investigates optimization of the acid washing conditions for the soil. The soil at the site is presumed to be contaminated by diffused heavy-metal-contaminated tailings. The major heavy metal pollutants in the soil are copper, lead, and zinc. Gravels larger than 5mm in size constitute approximately 38% of the soil, and these are the least polluted by heavy metals. On the other hand, it is difficult to reduce the concentration of heavy metals in fine soils, particularly those whose sizes are less than 0.075 mm. The results of the continuous process using a hydro-cyclone show that fine soil particles consisting of at least 20% of the raw soil must be separated before the chemical soil washing process in order to achieve reliable cleaning.

Concentrating Effect of Heavy Metals from Heavy Metal Contaminated Soil by Magnetic Separation (중금속오염 토양의 자기분리에 의한 오염농축효과)

  • Kim, Jee-Eun;Kim, Jeong-Jin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.311-320
    • /
    • 2014
  • A magnetic separation study was conducted for a soil sampled from a landfill site where steel slag had been dumped for a long time. Heavy metal concentrating effect was evaluated by analyzing heavy metal content of magnetically separated soil and passed through soil. The effect was compared between soil after soil-washing process and original landfill soil and the effect was also tested between wet condition-magnetic separation and dry condition-magnetic separation. Separated ratio was relatively higher in non-soil washed sample. The water content has no significant effect on the separation rate. The concentrating effect of Fe, Pb, Cu, and Cd were 3.2, 2.1, 12.1, 2.5, 1.5 and 17.4, 7.0, 15.7, 9.6, 7.0 respectively for non-soil washed sample and soil washed sample. We can expect a bigger volume reduction effect from soil-washed samples. The volume reduction effect was obtained from the separation in dry condition. However, when the separation ratio is too high the volume reduction effect decreases. The magnetic separation leads to a volume reduction and concentration of heavy metals into a portion of soil in case of paramagnetic particles contained soil.

Remediation of Soils Contaminated with Arsenic and heavy Metals by Soil Washing (토양세척에 의한 비소 및 중금속 오염토양의 복원)

  • Ko Ilwon;Lee Cheol-Hyo;Lee Kwang-Pyo;Kim Kyoung-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.52-61
    • /
    • 2004
  • In order to remediate soils contaminated with oxyanionic As and cationic Zn and Ni through the pilot-scale acid washing, the effectiveness of acid washing and the properties of contaminated soils, fine soil particle and dissolved contaminants were evaluated. $H_{2}SO_4\;and\;H_{3}PO_4$ washing at pH $2{\sim}3$ enhanced the removal of As by the presence of competitive oxyanions and HCl washing effectively removed simultaneously As, Zn and Ni. The effectiveness of soil washing was little enhanced above the critical reaction time, and the carbonate, Fe/Mn oxide and organic/sulfides associated fraction were dominantly removed. The washing of coarse soil particles was highly efficient, but that of fine soil particles($<74{\mu}m$) was recalcitrant due to the enrichment with contaminants. Moreover, the physical separation of fine particles($<149{\mu}m$) enhanced the overall efficiency of soil washing. Therefore, both chemical extraction and separation of fine soil particles showed the high effectiveness of soil washing in the intersection point to minimize the amount of fine soil particles and to maximize the chemical extraction of contaminants.