DOI QR코드

DOI QR Code

Concentrating Effect of Heavy Metals from Heavy Metal Contaminated Soil by Magnetic Separation

중금속오염 토양의 자기분리에 의한 오염농축효과

  • Kim, Jee-Eun (Department of Environmental Engineering, Andong National University) ;
  • Kim, Jeong-Jin (Department of Earth and Environmental Sciences, Andong National University) ;
  • Kim, Young-Hun (Department of Environmental Engineering, Andong National University)
  • Received : 2014.12.15
  • Accepted : 2014.12.24
  • Published : 2014.12.30

Abstract

A magnetic separation study was conducted for a soil sampled from a landfill site where steel slag had been dumped for a long time. Heavy metal concentrating effect was evaluated by analyzing heavy metal content of magnetically separated soil and passed through soil. The effect was compared between soil after soil-washing process and original landfill soil and the effect was also tested between wet condition-magnetic separation and dry condition-magnetic separation. Separated ratio was relatively higher in non-soil washed sample. The water content has no significant effect on the separation rate. The concentrating effect of Fe, Pb, Cu, and Cd were 3.2, 2.1, 12.1, 2.5, 1.5 and 17.4, 7.0, 15.7, 9.6, 7.0 respectively for non-soil washed sample and soil washed sample. We can expect a bigger volume reduction effect from soil-washed samples. The volume reduction effect was obtained from the separation in dry condition. However, when the separation ratio is too high the volume reduction effect decreases. The magnetic separation leads to a volume reduction and concentration of heavy metals into a portion of soil in case of paramagnetic particles contained soil.

슬래그를 매립한 토양을 대상으로 자기분리연구를 수행하였다. 토양세척을 거친 토양과 토양세척 전 토양을 대상으로 습식자기분리와 건식자기분리를 수행하여 분리된 부분과 분리되지 않은 부분의 중금속 농도를 측정하여 중금속의 농축효과를 측정하였다. 습식자기분리의 경우 토양세척 전 시료의 자력분리율이 상대적으로 높으며 토양세척 후 시료의 경우 약 40% 정도가 자기분리 되었다. 토양 : 물의 비가 농축효과에는 큰 영향을 미치지 못하며, Fe, Pb, Cu, Zn, Cd의 세척 전 토양과 세척 후 토양의 자기분리에 의한 평균 농축비는 3.2, 2.1, 12.1, 2.5, 1.5와 17.4, 7.0, 15.7, 9.6, 7.0으로 토양 세척을 거친 경우 자기분리에 의해 토양 세척 전 토양에 비해 더 큰 토양 부피 감량효과를 기대할 수 있다. 건식자기분리의 경우에도 자기분리에 의해 중금속의 농축효과를 얻을 수 있으나 자기분리에 의한 회수율이 너무 높은 경우 오염토 저감을 기대하기 어렵다. 철과 같은 강자성체를 포함하는 토양의 경우 자기분리에 의해 토양세척의 효과와 유사하게 오염토양의 양을 줄일 수 있고, 오염이 한쪽에 농축되는 결과를 얻을 수 있다.

Keywords

References

  1. Cho Y.D., Yoon W.J., Kang I.J., Yoo I.S., and Lee S.W. (2006) The Treatment of Flexo-inks Wastewater using Powdered Activated Carbon Including Iron-transition Metal, Journal of Korean Society on Water Quality, 22, 6, 996-1003 (in Korean with English abstract).
  2. Eom T.K. (2010) Wastewater Treatment by Magnetic Separation using Pulp Wastewater, Journal of Korean Society of Water Science and Technology, 18, 2, 57-68 (in Korean with English abstract).
  3. Fontes M.P.F., de Oliveira T.S., da Costa L.M., and Campos A.A.G., 2000, Magnetic separation and evaluation of magnetization of Brazilian soils from different parent materials, Geoderma, 96, 81-99. https://doi.org/10.1016/S0016-7061(00)00005-7
  4. Ha D.W. (2010) Superconducting Magnetic Separation Technolgy Trends, The Korea Institute of Applied Superconductiviry and Cryogenics, 23, 25-30 (in Korean with English abstract).
  5. Hayashi S., Mishima F., Akiyama Y., and Nishijima S. (2011) Development of superconducting high gradient magnetic separation system for highly viscous fluid for practical use, Physica C: Superconductivity, 471, 1511-1515. https://doi.org/10.1016/j.physc.2011.05.227
  6. Igarashi S., Mishima F., Akiyama Y., and Nishijima S. (2013) Fundamental study of cesium decontamination from soil by superconducting magnet, Physica C: Superconductivity, 494, 221-224. https://doi.org/10.1016/j.physc.2013.05.019
  7. Igarashi S., Nomura N., Mishima F., Akiyama Y., and Nishijima S. (2014) Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet, Physica C: Superconductivity, 504, 144-147. https://doi.org/10.1016/j.physc.2014.02.015
  8. Kakihara Y., Fukunishi T., Takeda S., Nishijima S., and Nakahira A. (2004) Superconducting High Gradient Magnetic Separations for Purification of Wastewater From Paper Factory, IEEE Tracsactions on applied superconductivity, 14, 1565-1567. https://doi.org/10.1109/TASC.2004.830709
  9. Nishijima S., Takahata K., Saito K., and Okada T. (1987) Applicability of superconducting magnet to high gradient magnetic separator, IEEE Transations on magnetics, MEG-23, 2, 573-576.
  10. Nishijima S., and Takeda S.I. (2006) Superconducting High Gradient Magnetic Separations for Purification of Wastewater From Paper Factory, IEEE Tracsactions on applied superconductivity, 16, 1142-1145. https://doi.org/10.1109/TASC.2006.871346
  11. Nishijima S., and Takeda S.I. (2007) Research and Development of Superconductiong High Gradient Magnetic Separation for Purification of Wastewater from Paper Factory, applied superconductivity, 17, 2311-2314. https://doi.org/10.1109/TASC.2007.898116
  12. Rikers R.A., Rem P., and Dalmijn W.L. (1998) Improved method for prediction of heavy metal recoveries from soil using high intensity magnetic separation (HIMS), International Journal of Mineral Process, 54, 165-182. https://doi.org/10.1016/S0301-7516(98)00017-9
  13. Sierra C., Martinez J., Menendez-Aguado J.M., Afif E., and Gallego J.R. (2013) High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy, Journal of Hazardous Materials, 248-249, 194-201. https://doi.org/10.1016/j.jhazmat.2013.01.011
  14. Sierra C., Martinez-Blanco D., Jesus A.B., and Gallego J.R. (2014) Optimisation of magnetic separation: A case study for soil washing at a heavy metals polluted site, Chemosphere, 107, 290-296. https://doi.org/10.1016/j.chemosphere.2013.12.063
  15. Takeda S.I., and Nishijima S. (2007) Development of Magnetic Separation of Water-Soluble Materials Using Superconductiong Magnet, IEEE Transactions of applied superconductivity, 17, 2178-2180. https://doi.org/10.1109/TASC.2007.899198