• Title/Summary/Keyword: 토양 세균

Search Result 708, Processing Time 0.036 seconds

Effects of Pesticides on Soil Microflora -Changes of the Composition of Soil Bacterial Flora- (농약(農藥)이 토양미생물상(土壤微生物相)에 미치는 영향(影響) - 토양세균(土壤細菌)Flora의 구성변화(構成變化)에 대하여 -)

  • Yang, Chang-Sool
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.221-226
    • /
    • 1985
  • This investigation was undertaken to clarify the effects of consecutive application of insecticide (Hexachlorocyclohexane: HCH, 10 ppm each year) and fungicide (Tetrachloroisophthalonitrile: TPN, 40 ppm each year) on changes of the composition of soil bacterial flora in the experimental plots treated with each pesticide for two years. For these purposes, the isolating of bacterial cells growing on albumin agar plate was carried out with non-treated, HCH-treated and TPN-treated soil. And these isolated strains were grouping in accordance with the first diagnostic table of Cowan & Steel based on the morphological and physiological characteristics of bacterial cells. The mortality rate of bacteria was 30% in control, 44% in HCH and 51% in TPN plot respectively, in the process of obtaining pure culture. This suggests that the application of HCH or TPN enriched the fastidious bacteria in soil. The proportion of Gram-negative strains to the total isolates was 37% in control, 37% in HCH and 75% in TPN plot respectively. This means that the application of TPN enriched Gram-negative strains in soil. And the application of TPN increased the number of Gram-negative, nonspore-forming strains, and meanwhile decreased the number of spore-forming strains. In the results, the application of HCH or TPN changed considerably the composition of soil bacterial flora. And the influences of HCH and TPH on changes of the composition of soil bacterial flora were not equal each to each.

  • PDF

Microflora of Daekwanryung Highland soil (대관령(大關嶺) 고령지(高嶺地) 토양(土壤)의 토양미생물상(土壤微生物相) 조사(調査))

  • Yun, Sei-Young;Kim, Jeong-Je;Yang, Jae-Wei;Jung, Young-Sang;Choi, Joong-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.94-98
    • /
    • 1997
  • This experiment was conducted to investigate the distribution of the soil microflora of Daekwanryung highlands of Kwangwon Province. It was found that soil microorganisms each as Bacteria, Actinomycetes, Fungi, Pseudomonas spp. and Erwnia sp. were mostly in the top 0-15 cm profile. It also was found that soil microflora population was affected in many ways by kind of cropping plant. The number of Erwinia sp. that is one of the soil born plant pathogenic bacteria was more abundant in potato field than chinese cabbage soil. It was also studied difference of mountain and grassland soils from cropping soils.

  • PDF

Effects of Amendments on the Phosphate-solubilizing Bacteria in Rice Paddy Soils (논 토양 인산가용화세균에 대한 개량제 시용효과)

  • Suh, Jang-Sun;Noh, Hyung-Jun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.342-347
    • /
    • 2008
  • Phosphate soubilized by microbes can be easily absorbed by plant as the element diffuses into soil solution. The microbes related to phosphate solubilizing activity are affected by the soil amendments such as rice straw compost, and lime. This study was performed to evaluate the effect of amendments to phosphate solubilizer in rice paddy soils. Available phosphate concentration was increased with the ratio of phosphate-solubilizing bacteria to aerobic bacteria in the rice paddy soils. The ratio was high in the plots applied with lime, silicate, and rice straw compost. Phosphate-solubilizing bacteria isolated from the soil were Aquasipirillum, Arthrobacter, Bacillus, Flavobacterium, Micrococcus and Micromonospora, Pseudomonas species. The highest dominant bacterial species was Pseudomonas, and Bacillus was followed.

Impacts of Organic Farming System on the Soil Microbial Population in Upland Soil (밭토양 유기재배가 토양 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Sonn, Yeon-Kyu;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Kwak, Youn-Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.819-823
    • /
    • 2011
  • The present study evaluated the seasonal changes of the soil microbial population by selected media in an organic farming system (OFS) with rye rotation cropping management compared to those in a conventional farming system (CFS) with chemical fertilizers, pesticide and herbicide from May 2009 to October 2010 in an upland field. With the exception of fungi, populations of aerobic bacteria, Gram-negative bacteria, and Bacillus spp. were higher in the OFS soil during soybean-growing stages. In addition, populations of aerobic bacteria, Gram-negative bacteria, and Bacillus spp. in the OFS soil were nearly two times more than those in the CFS soil on reproductive growth stages. Our findings suggested that Bacillus spp. should be considered as responsible factor for microbial population differentiation observed between the OFS and the CFS in upland fields.

Effect of Soil Environment on Diversity and Population of Aerobic Soil Bacteria from Baekdudaegan Mountain Forests in Gyeongsangbuk-do, Korea (경상북도 산림지역의 토양 환경이 호기성 토양 세균의 다양성과 밀도에 미치는 영향)

  • Park, Chul Yeong;Lee, Sun Keun;Kim, Ji Hong;Lee, Sang Yong;Lee, Jong Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.501-508
    • /
    • 2012
  • This study was carried out to compare species diversity of soil bacteria from Baekdudaegan mountain forests (Bonghwa-gun, Mungyeong-si and Sangju-si) in Gyeongsangbuk-do and to analyze the effects of soil environments on diversity and population of soil bacteria. Soil bacteria were isolated from soil samples by streak plate method, and identified by DNA extaction and 16S rDNA sequence analyses. The population of soil bacteria from the soil samples of Bonghwa-gun was the highest with $5.1{\times}10^5cfu/g$, and followed by those from Mungyeong-si and Sangju-si with $1.9{\times}10^5cfu/g$ and $1.1{\times}10^5cfu/g$, respectively. The population of soil bacteria from surface layer soil was the highest, and then gradually decreased according to soil depth. The increase in population of soil bacteria from soil samples of different sites was correlated with the increase of the altitude of soil sampling site, depth of A horizon, liquid phase among three phases of soil, water content and bulk density of soil. Two hundreds and sixty eight bacterial colonies from Bonghwa-gun were classified into 10 species, 8 genera. One hundred and thirty four bacterial colonies from Mungyeong-si were classified into 15 species, 9 genera. Forty four bacterial colonies from Sangju-si were classified into 5 species, 2 genera. The dominant species (occupancy rate) from Bonghwa-gun and Mungyeong-si were Bacillus weihenstephanensis (36% and 40%, respectively), and Sangju-si was Bacillus cereus (39%). The relationships between soil environment and community structure of soil bacteria were analyzed statistically by using ecological indices. The diversity, evenness and dominance indices of soil bacteria were 6.30, 2.04 and 0.59 in Bonghwa-gun, 9.09, 2.94 and 0.51 in Mungyeong-si, and 4.55, 2.34 and 0.71 in Sangju-si, respectively. The diversity and evenness indices were increased by the increase of water content, drainage condition and gravel content of soil, while the dominance index was decreased.

A comparison of community structure and denitrifying ratio for denitrifying bacteria dependent on agricultural methods and seasons (농법과 계절에 따른 탈질세균의 군집 구조와 탈질율 비교)

  • Yoon, Jun-Beom;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • We studied soil composition, $N_2O$ production, a number of denitrifying bacteria, community structure and T-RFLP patterns of denitrifying bacteria dependent on agricultural methods with the change of seasons. Analyses of the soil chemical composition revealed that total carbon and total organic carbon contents were 1.57% and 1.28% in the organic farming soil, 1.52% and 1.24% in the emptiness farming soil, and 1.40% and 0.95% in traditional farming soil, respectively. So, the amount of organic carbon was relatively high in the environment friendly farming soils than traditional farming soils. In case of $N_2O$ production, the amount of $N_2O$ production was high in May and November soils, but the rate of $N_2O$ production was fast in August soil. The average number of denitrifying bacteria were $1.32{\times}10^4MPN{\cdot}g^{-1}$ in the organic farming soil, $1.17{\times}10^4MPN{\cdot}g^{-1}$ in the emptiness farming soil, and $6.29{\times}10^3MPN{\cdot}g^{-1}$ in the traditional farming soil. It was confirmed that the environment friendly farming soil have a larger number of denitrifying bacteria than the traditional farming soil. As a result of the phylogenetic analyses, it was confirmed that six clusters were included in organic farming soil among total 10 clusters. And the result of PCA profile distribution of T-RFLP pattern on agricultural methods, the range of distribution showed wide in the organic farming method, relatively narrow in the conventional farming method, and middle in the emptiness farming method. Therefore, we could concluded that the distribution and the community structure of denitrifying bacteria were changed according to the agricultural methods and seasons.

Methane Production and T-RFLP Patterns of Methanogenic Bacteria Dependent on Agricultural Methods (농법에 따른 메탄생성과 메탄생성 세균의 T-RFLP 패턴)

  • Kim, Hun-Soo;Cho, Ju-Sik;Park, Kyeong-Ryang
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • We studied soil components, methane production, the number of methanogens, and T-RFLP patterns dependent on agricultural methods with the change of seasons. There is no regular increase or decrease tendency of the most soil components followed by sampling period. And the water content in soil was higher in October than May. Also a lot of methanogens existed in soil, and acetotrophs were relatively of smaller number than hydogenotrophs and formate utilizing methanogens using MPN (most probable number) enumeration. In the experiment using the formate, it was used from the first week, and only a minute amount was detecte after four weeks. However in the acetate, it was increased until the third week, and after that was consumed. And there was higher methane production for all soil samples which administered with the hydrogen spike. The activity of methanogens was higher in the organic and low-agrichemical agricultural method samples, and the organic agricultural method had high methanogen activity among the other samples. A result of T-RFLP pattern of mcrA gene digested with Sau96I, methanogen community have a little relation with agricultural methods and seasons. This results also agreed to no critical difference the soil components dependent on agricultural methods, but some analytical data have a positive relationship with a agricultural methods. Therefor we could concluded that the comparison study of community for soil bacteria sufficiently could be useful for the microbiological indicator.

Evaluation of Various Oligotrophic Media for Cultivation of Previously Uncultured Soil Bacteria (난배양성 토양세균의 배양법 평가 및 신 분류군의 순수분리)

  • Kim, Do-Hyoung;Lee, Sang-Hoon;Cho, Jae-Chang
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.352-357
    • /
    • 2008
  • We evaluated cultivation methods to obtain pure cultures of previously uncultivated bacteria from soil. Soil bacteria (suspensions) were inoculated onto various oligotrophic media with one of the following additives: 1) soil extract; 2) anthraquinone disulfonate (humic acid analogue); 3) acyl homoserine lactones (quorum-signaling compounds); 4) catalase (for the protection of bacteria from exogenous peroxides). After the relatively long period (60 days) of incubation with elevated concentrations of $CO_2$ (5%, v/v), the media containing catalase showed the highest colony count. We purified 147 randomly selected colonies from the media and the isolates were subjected to the phylogenetic analyses of their 16S rRNA gene sequences. Phylogenetic analysis revealed that approximately 30% of the isolates might belong to novel species or novel family, suggesting that the media and incubation conditions used could be useful for the cultivation of as-yet-uncultured bacteria. Especially, bacteria belonging to the phylum Acidobacteria, ubiquitous bacterial taxon known as an uncultured bacterial group (at least difficult to culture from environmental samples), were successfully cultured in this study.

Review and Future Development of New Culture Methods for Unculturable Soil Bacteria (난배양성 토양세균을 위한 신배양기술의 고찰과 향후 발전 방향)

  • Kim, Jai-Soo
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.179-187
    • /
    • 2011
  • This review describes the characteristics of various unculturable soil bacteria, successfully-cultivating examples of those bacteria, and the diverse factors to be considered for successful cultivation. Most importantly, the selection of proper media is very important because unculturable bacteria demand different types of nutrients at various concentrations of substrates, nitrogens and phosphorus. To develop a new medium to successfully culture unculturable bacteria from soil, molecular ecological studies should be combined together. The inoculum size on a plate is also important: less than 50 bacterial cells are recommended to be plated on a single culture plate. The environmental factors such as pH and salt concentration of the medium need to be adjusted as similar as possible to mimic the original soil environments, and the trial of the various temperatures and extended period of cultivation are better. Since one cannot simply tell about which one was unculturable among a great number of colonies grown on a newly developed medium, some suitable detection methods and fast identification methods are required. Many soil bacteria live with cooperation one another in their communities, so that enrichment such as coculture of using other bacterial metabolites and subsequent pure cultures can also guarantee successful cultivation of the previously uncultured bacteria in soil. Here, this review will discuss for the future perspectives to culture the unculturable soil bacteria.

Impacts of Organic Farming System on the Soil Microbial Ecology in No-till Paddy (무경운 벼 유기농업이 토양 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Ahn, Byung-Koo;Ahn, Youn-Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.814-818
    • /
    • 2011
  • The seasonal changes were evaluated in the soil microbial populations by selected media in an organic farming system (OFS) with no-till management compared to those in a conventional farming system (CFS) with tillage and synthetic amendments in a flooded paddy from 2009 to 2010. The populations of aerobic bacteria and fungi in the OFS were significantly higher than those in the CFS at the harvesting stages, whereas those of Gram-negative bacteria was significantly higher in the OFS than in the CFS before the submerging stages. In addition, populations of aerobic bacteria, Gram-negative bacteria, and fungi tended to rapidly decreased after the submerging stages may be due to insufficient oxygen. Gram-negative bacteria should be considered as potential factor responsible for the microbial population differentiation observed between the OFS and the CFS in flooded paddy fields.