• Title/Summary/Keyword: 토양 세균

Search Result 708, Processing Time 0.029 seconds

The Relationship between Microbial Characteristics and Glomalin Concentrations in Paddy Soils of Gyeongnam Province (경남지역 논토양 미생물 특성과 글로말린 함량 상관관계)

  • Lee, Young-Han;Kim, Min-Keun;Ok, Yong Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.792-797
    • /
    • 2012
  • Glomalin-related soil protein has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and characteristics of microbial community in 20 paddy soils sampled from Gyeongnam Province. Total soil glomalin as glomalin-related soil protein (GRSP) had a significant positive correlation with soil organic matter (p<0.01) and soil dehydrogenase activity (p<0.01). The concentration of GRSP significantly correlated to soil microbial biomass carbon (p<0.001) and the total bacterial community (p<0.01) in paddy soils. In addition, the GRSP had a significant positive correlation with gram-negative bacteria community (p<0.05) and ratio of cy19:0 to 18:$1{\omega}7c$ (p<0.05) in paddy soils. In conclusion, the concentration of GRSP could be an indicator of soil health that simplify the inspection steps for sustainable agriculture in paddy soils.

Microbial Activity of Ammonia Oxidizing Bacteria and Ammonia Oxidizing Archaea in the Rice Paddy Soil in Wang-gung Area of Iksan, Korea (익산 왕궁지역 논 토양에서의 질산화 세균과 질산화 고세균의 미생물학적 작용)

  • Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.50-59
    • /
    • 2016
  • Spatial and temporal changes in nitrification activities and distribution of microbial population of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in paddy soils were investigated. Soil samples were collected in March and October 2015 from rice paddy with and without the presence of confined animal feeding operations. Incubation experiments and quantitative polymerase chain reaction showed that AOA's contribution to nitrification kinetics was much higher in locations where organic nitrogen in animal waste is expected to significantly contribute to overall nitrogen budget, and temporal variations in nitrification kinetics were much smaller for AOA than AOB. These differences were interpreted to indicate that different microbial responses of two microbial populations to the types and concentrations of nitrogen substrates were the main determining factors of nitrification processes in the paddy soils. The copy numbers of ammonium monooxygenase gene showed that AOA colonized the paddy soils in higher numbers than AOB with stable distribution while AOB showed variation especially in March. Although small in numbers, AOB population turned out to exert more influence on nitrification potential than AOA, which was attributed to higher fluctuation in AOB cell numbers and nitrification reaction rate per cells.

Draft genome sequence of humic substances-degrading Pseudomonas kribbensis CHA-19 from temperate forest soil (중위도 산림토양에서 분리한 부식질 분해능이 있는 Pseudomonas kribbensis CHA-19의 유전체 염기서열 초안)

  • Kim, Dockyu;Lee, Hyoungseok
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.177-179
    • /
    • 2019
  • Pseudomonas kribbensis CHA-19 was isolated from a temperate forest soil (mid latitude) in New Jersey, USA, for its ability to degrade humic acids, a main component of humic substances (HS), and subsequently confirmed to be able to decolorize lignin (a surrogate for HS) and catabolize lignin-derived ferulic and vanillic acids. The draft genome sequence of CHA-19 was analyzed to discover the putative genes for depolymerization of polymeric HS (e.g., dye-decolorizing peroxidases and laccase-like multicopper oxidases) and catabolic degradation of HS-derived small aromatics (e.g., vanillate O-demethylase and biphenyl 2,3-dioxygenase). The genes for degradative activity were used to propose a HS degradation pathway of soil bacteria.

Comparative Analysis of Soil Microbial Communities between Conventional and Organic Farming Systems in Pepper Cultivation (관행과 유기농 고추 재배지의 토양미생물 군집 비교)

  • Kim, Yiseul;Lee, Youngmi;Weon, Hang-Yeon;Sang, Mee Kyung;Song, Jaekyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.235-250
    • /
    • 2020
  • Agricultural practices are known to have a crucial influence not only on soil physico-chemical properties but also on microbial communities. To investigate the effect of farming practices on soil microbial communities, a total of 10 soil samples were collected, including five conventional and five organic farming soils cultivated with peppers in plastic greenhouse. We conducted barcorded-pyrosequencing of V1-V3 regions of 16S rRNA genes to examine soil microbial communities of two different farming practices. Taxonomic classification of the microbial communities at the phylum level indicated that a total of 22 bacterial phyla were present across all samples. Among them, seven abundant phyla (>3%) including Proteobacteria, Actinobacteria, Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were found, and Proteobacteria (33.0 ± 5.7%), Actinobacteria (19.9 ± 9.7%), and Firmicutes (13.6 ± 5.0%) comprised more than 66% of the relative abundance of the microbial communities. Organic farming soils showed higher relative abundances of Proteobacteria and Firmicutes, while Actinobacteria and Chloroflexi were more abundant in conventional farming soils. Notably, the genera Bacillus (higher in organic farming soils) and Streptomyces (higher in conventional farming soils) exhibited significant variation in relative abundance between organic and conventional farming soils. Finally, correlation analysis identified significant relationships (p<0.05) between soil chemical properties, in particular, pH and organic matter content and microbial communities. Taken together, this study demonstrated that the changes of soil physico-chemical properties by agricultural farming practices effected significantly (p<0.05) on soil microbial communities.

Studies on Phytotoxin in Intensively Cultivated Upland Soil III. The Abilities of Siderophore Formation, Competition and Absorption of Fe3+ and Mn2+ with Inoculation of the Fluorescence Forming Soil Bacteria and Soil Saprophytic Fungi (연작장해지토양(連作障害地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) 제(第)3보(報) Siderophore 생성(生成) Pseudomonas 속(屬) 세균접종(細菌接種) 및 양(陽) ion 첨가(添加)가 토양부생균(土壤腐生菌)의 생육(生育)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 1988
  • A laboratory experiment was conducted to find out the abilities of siderophore formation and competition of $Fe^{3+}$ and $Mn^{2+}$ absorption in synthetic medium with inoculation of fluorescence forming pseudomonas and soil saprophytic fungi as Stachybotrys chatarum, Fusarium solani, and F. oxysporum. The results obtained were summarized as follows; 1. The concentration of siderophore in synthetic medium with inoculation of Pseudomonas putida pt-II was increased (with progress of incubation time). 2. The negative correlation was obtained with the increase of $Fe^{3+}$ ion concentration and siderophore in synthetic medium with inoculation of fluorescence forming pseudomonas and soil saprophytic fungi. 3. The fresh weight of fungal hyphae was decreased with the increase of siderophore in synthetic medium. 4. There was insignificant relationship between the concentration of $Mn^{2+}$ and the concentration of siderophore while the positive correlation was obtained with the increase of fresh weight of fungal hyphae.

  • PDF