Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.5.792

The Relationship between Microbial Characteristics and Glomalin Concentrations in Paddy Soils of Gyeongnam Province  

Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services)
Kim, Min-Keun (Gyeongsangnam-do Agricultural Research and Extension Services)
Ok, Yong Sik (Biochar Research Center, Department of Biological Environment, Kangwon National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.5, 2012 , pp. 792-797 More about this Journal
Abstract
Glomalin-related soil protein has been suggested as an enhancer for soil stability by promoting the aggregation. In this study, we examined the concentrations of glomalin and characteristics of microbial community in 20 paddy soils sampled from Gyeongnam Province. Total soil glomalin as glomalin-related soil protein (GRSP) had a significant positive correlation with soil organic matter (p<0.01) and soil dehydrogenase activity (p<0.01). The concentration of GRSP significantly correlated to soil microbial biomass carbon (p<0.001) and the total bacterial community (p<0.01) in paddy soils. In addition, the GRSP had a significant positive correlation with gram-negative bacteria community (p<0.05) and ratio of cy19:0 to 18:$1{\omega}7c$ (p<0.05) in paddy soils. In conclusion, the concentration of GRSP could be an indicator of soil health that simplify the inspection steps for sustainable agriculture in paddy soils.
Keywords
Glomalin; Soil microbial biomass C; Paddy soil; Dehydrogenase;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Casida, L.E., D.A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Sci. Soc. Am. J. 47:599-603.
2 Celik, I., Z.B. Barut, I. Ortas, M. Gok, A. Demirbas, Y. Tulun, and C. Akpinar. 2011. Impacts of different tillage practices on some soil microbiological properties and crop yield under semi-arid Mediterranean conditions. Int. J. Plant Prod. 5(3):237-254.
3 Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294.   DOI   ScienceOn
4 Zhang, S., Q. Li, X. Zhang, K. Wei, L. Chen, and W. Liang. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Till. Res. 124:196-202.   DOI
5 Wright, S.F., J.L. Starr, and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. 63:1825-1829.   DOI
6 Wright, S.F., K.A. Nichols, and W.F. Schmidt. 2006. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64:1219-1224.   DOI
7 Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203.   DOI
8 Wright, S.F., V.S. Green, and M.A. Cavigelli. 2007. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 94:546-549.   DOI
9 Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707.   DOI   ScienceOn
10 Vodnik, D., H. Grcman, I. Macek, J.T. van Elteren, and M. Kovacevic. 2008. The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci. Total Environ. 392:130-136.   DOI   ScienceOn
11 Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol. Fertil. Soils 31:249-253.   DOI
12 Wilson, G.W.T., C.W. Rice, M.C. Rillig, A. Springer, and D.C. Hartnett. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol. Lett. 12:452-I461.   DOI
13 Wright, S.F. and A. Upadhyaya. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from aruscular mycorrhizal fungi. Soil Sci. 161(9):575-596.   DOI
14 Wright, S.F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 97-107.
15 Treseder, K.K. and K.M. Turner. 2007. Glomalin in ecosystems. Soil Sci. Soc. Am. J. 71:1257-1266.   DOI
16 Rillig, M.C., P.W. Ramsey, S. Morris, and E.A. Paul. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 293-299.
17 SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.
18 Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668.   DOI   ScienceOn
19 Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2099-2103.
20 NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea. (In Korean).
21 Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3):434-441.   과학기술학회마을   DOI
22 Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84:355-363.   DOI
23 Rilling, M.C. and D.L. Mummey. 2006. Mycorrhizas and soil structure. New Phytol. 171:41-53.   DOI
24 Rilling, M.C., E.R. Lutgen, P.W. Ramsey, J.N. Klironomos, and J.E. Gannon. 2005. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251-259.   DOI
25 Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433.   과학기술학회마을   DOI
26 Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
27 Miller, R.M. and J.D. Jastrow. 1990. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22(5):579-584..   DOI
28 Min, S.G., S.S. Park, and Y.H. Lee. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44(3):479-484.   과학기술학회마을   DOI
29 Lee, Y.H., B.K. Ahn, S.T. Lee, M.A. Shin, E.S. Kim, W.D. Song, and Y.K. Sonn. 2011c. Impacts of soil texture on microbial community from paddy soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(6):1176-1180.   과학기술학회마을   DOI
30 Lee, Y.H., B.K. Ahn, S.T. Lee, M.A. Shin, E.S. Kim, W.D. Song, and Y.K. Sonn. 2011b. Impacts of soil type on microbial community from paddy soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(6):1164-1168.   과학기술학회마을   DOI
31 Lee, Y.H., B.K. Ahn, and Y.K. Sonn. 2011a. Relationship of topography and microbial community from paddy soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(6):1158-1163.   과학기술학회마을   DOI
32 Jeon, W.T., K.Y. Seong, M.T. Kim, G.J. Oh, I.S. Oh, and U.G. Kang. 2010. Changes of soil physical properties by glomalin concentration and rice yield using different green manure crops in paddy. Korean J. Soil Sci. Fert. 43:119-123.   과학기술학회마을
33 Johnson, C.K., B.J. Wienhold, J.W. Doran, R.A. Drijber, and S.F. Wright. 2004. Linking microbial-scale findings to farm-scale outcomes in a dryland cropping system. Precis. Agric. 5:311-328.   DOI
34 Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
35 Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem.665-676.
36 Johnson, C.K., J.W. Doran, H.R. Duke, B.J. Wienhold, K.M. Eskridge, and J.F. Shanahan. 2001. Field-scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837.   DOI
37 Dick, R.P. 1997. Enzyme activities as intergrative indicators of soil health, p. 121-156. In C.E. Parkhurst, B.M. Doube, and V.V.S.R. Gupta (eds.). Biological Indicators of Soil Health. CAB International, Oxon, UK.
38 Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116.   DOI
39 He, X., Y. Li, and L. Zhao. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China. Soil Biol. Biochem. 42:1313-1319.   DOI
40 Huang, H.L., S.Z. Zhang, N.Y. Wu, L. Luo, and P. Christie. 2009. Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol. Biochem. 41(4):726-734.   DOI
41 Driver, J.D., W.E. Holben, and M.C. Rillig. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 37(1): 101-106.   DOI
42 Fokom, R., S. Adamou, M.C. Teugwa, A.D. Begoude Boyogueno, W.L. Nana, M.E.L. Ngonkeu, N.S. Tchameni, D. Nwaga, G. Tsala Ndzomo, and P.H. Amvam Zollo. 2012. Glomaln related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Till. Res. 120:69-75.   DOI
43 Alguacil, M.M., E. Lumini, A. Rolda, J.R. Salinas-Garci, P. Bonfante, and V. Bianciotto. 2008. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol. Appl. 18:527-536.   DOI
44 Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278.   DOI   ScienceOn