• Title/Summary/Keyword: 텍스트 요약

Search Result 159, Processing Time 0.025 seconds

Topic Modeling of News Article about International Construction Market Using Latent Dirichlet Allocation (Latent Dirichlet Allocation 기법을 활용한 해외건설시장 뉴스기사의 토픽 모델링(Topic Modeling))

  • Moon, Seonghyeon;Chung, Sehwan;Chi, Seokho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.595-599
    • /
    • 2018
  • Sufficient understanding of oversea construction market status is crucial to get profitability in the international construction project. Plenty of researchers have been considering the news article as a fine data source for figuring out the market condition, since the data includes market information such as political, economic, and social issue. Since the text data exists in unstructured format with huge size, various text-mining techniques were studied to reduce the unnecessary manpower, time, and cost to summarize the data. However, there are some limitations to extract the needed information from the news article because of the existence of various topics in the data. This research is aimed to overcome the problems and contribute to summarization of market status by performing topic modeling with Latent Dirichlet Allocation. With assuming that 10 topics existed in the corpus, the topics included projects for user convenience (topic-2), private supports to solve poverty problems in Africa (topic-4), and so on. By grouping the topics in the news articles, the results could improve extracting useful information and summarizing the market status.

Text Mining Techniques for Adaptable Learning (적응적인 학습을 위한 텍스트 마이닝 기술)

  • Kim, Cheon-Shik;Jung, Myung-Hee;Hong, You-Sik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.31-39
    • /
    • 2008
  • Until now, there are many technologies to improve studying ability using e-learning system. In most of e-learning system, learners are studying through the lecture materials and studying problems. The studying ability and intention, however, can be improved through the shared materials and discussion. In this case, learning materials are shared by the learners' discussion and shared materials through the board Internet and MSN. Such data was not classified by learners; it was not easy for the learners to search related valuable information. Therefore, it was not helping to learning. The technologies of most text mining extract summary data from the collection of document or classify into similar document from the complex document. In this paper, we implemented e-learning system for learners to improve learning abilities and especially, applied text mining technology to classify learning material for helping learners.

Keyword Extraction from News Corpus using Modified TF-IDF (TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법)

  • Lee, Sung-Jick;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.

  • PDF

An Analysis of Keywords on 'School Space Innovation' Policies using Text Mining - Focused on News Articles - (텍스트 마이닝을 활용한 '학교 공간 혁신' 정책 키워드 분석 - 뉴스 기사를 중심으로 -)

  • Lee, Dongkuk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.2
    • /
    • pp.11-20
    • /
    • 2020
  • The goal of this study was to investigate the implementation and related issues of the school space innovation issued by key Korean mass media using text mining. To accomplish this goal, this study collected 519 news articles associated with the school space innovation issued by 54 Korean mass media companies. Based on this data, this study performed the frequency analysis and network analysis regarding the keywords. Based on the findings, the characteristics of school space innovation are summarized as follows: First, school space innovation has progressed in response to future education. Second, users are actively participating in school space innovation. Third, experts are supporting the innovation of school space by establishing a cooperative system. Fourth, the community is actively considering the innovation of school space. Fifth, the main projects of the Ministry of Education and the Provincial Offices of Education are actively conducted in a mix of top-down and bottom-up approaches. The findings of this study will contribute to providing a clear direction for contemporary school space innovation and implications for future research agenda and implementation.

Meta Learning based Global Relation Extraction trained by Traditional Korean data (전통 문화 데이터를 이용한 메타 러닝 기반 전역 관계 추출)

  • Kim, Kuekyeng;Kim, Gyeongmin;Jo, Jaechoon;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.23-28
    • /
    • 2018
  • Recent approaches to Relation Extraction methods mostly tend to be limited to mention level relation extractions. These types of methods, while featuring high performances, can only extract relations limited to a single sentence or so. The inability to extract these kinds of data is a terrible amount of information loss. To tackle this problem this paper presents an Augmented External Memory Neural Network model to enable Global Relation Extraction. the proposed model's Global relation extraction is done by first gathering and analyzing the mention level relation extraction by the Augmented External Memory. Additionally the proposed model shows high level of performances in korean due to the fact it can take the often omitted subjects and objectives into consideration.

Text Big Data Analysis and Summary for Free Semester Operational Plan Document (자유학기제 운영계획서에 대한 텍스트 빅데이터 분석 및 요약)

  • Lee, Suan;Park, Beomjun;Kim, Minkyu;Shin, Hye Sook;Kim, Jinho
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.135-146
    • /
    • 2019
  • Big data analysis is actively used for collecting and analyzing direct information on related topics in each field of society. Applying big data analysis technology in education field is increasingly interested in Korea, because applying this technology helps to identify the effectiveness of education methods and policies and applying them for policy formulation. In this paper, we propose our approach of utilizing big data analysis technology in education field. We focus on free semester program, one of the current core education policies, and we analyze the main points of interests and differences in the free semester through analysis and visualization of texts that are written on the operation reports prepared by each school. We compare regional differences in key characteristics and interests based on the free semester operation reports from middle schools particularly at Seoul and Gangwon-do regions. In conclusion, applying and utilizing big data analysis technology according to the needs and requirements of education field is a great significance.

How National Water Management Plans lead Hydrological Survey Projects? (텍스트 마이닝을 이용한 국가 물관리 정책 변화 시점별 수문조사사업의 방향 분석)

  • Chan Woo Kim;Min Kuk Kim;Jung Hwan Koh;Seung Won Han;In Jae Choi;Dong Ho Hyun;Seok Geun Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.429-429
    • /
    • 2023
  • 우리나라의 물 관련 정책 방향이 환경 중심의 수자원 관리에서 친수공간 및 정보의 확보와 같은 안전한 물관리로 확대되면서 정책추진에 기초가 될 수 있는 신뢰도 높은 수문자료의 생산이 보다 중요시되고 있다. 국가 수문조사사업은 이러한 정책기조에 맞춰 제도적인 뒷받침과 함께 조사의 범위와 기술, 품질관리 등의 영역을 넓히며 그 기능을 활발히 하고 있으나, 물관리 정책의 경향에 따른 수문조사사업의 방향성과 특징을 구조적으로 살펴본 연구는 부족한 것으로 파악된다. 따라서 본 연구는 친수·친환경적 물관리가 강조된 시기('97~현재)를 중점으로 하여 물관리 정책과 관련 계획의 변화가 수문조사사업에 어떠한 영향을 주는지 고찰하였다. 이를 위해 물관리 여건의 변화에 따라 달라진 관련 정책별 주제어의 분포와 수문조사사업과 연관된 주요어의 출현빈도 및 경향을 살펴보고, 주요 연관어와 연계한 사업의 방향과 구조를 분석하였다. 분석자료로는 물관리 관련 법령 등의 제도와 언론기사자료, 정책별 추진방향을 활용하였다. 정책의 추진방향은 1) 수자원의 종합적 개발에서 친환경적 측면과 지속가능성이 강조된 수자원장기종합계획(3-1차~4-3차)과 2) 사람과 자연이 함께 고려된 맑고 안전한 물, 통합물관리 등의 전략이 수록된 국가물관리기본계획(1차), 3) 정책의 기조에 따라 수립 및 보완된 수문조사 기본계획(1~2차)을 바탕으로 하였다. R프로그램을 통한 텍스트 마이닝을 활용하여 각 자료에서의 주제어 분포와 출현빈도를 분석하고, 정책별 추진방향과 수문조사사업의 연계성을 나타내었다. 연구의 함의를 담은 결과로서 물관리 여건이 변화된 시점별 주요연관어를 중심으로 한 정책동향과 수문조사사업의 특징 및 방향을 요약·비교하여 제시하였으며, 이는 물관리 분야에서의 국정운영 목표와 연계하여 국가 수문조사사업의 사업성을 고찰하는 연구의 기반이 될 수 있으리라 생각된다.

  • PDF

A Keyphrase Extraction Model for Each Conference or Journal (학술대회 및 저널별 기술 핵심구 추출 모델)

  • Jeong, Hyun Ji;Jang, Gwangseon;Kim, Tae Hyun;Sin, Donggu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.81-83
    • /
    • 2022
  • Understanding research trends is necessary to select research topics and explore related works. Most researchers search representative keywords of interesting domains or technologies to understand research trends. However some conferences in artificial intelligence or data mining fields recently publish hundreds to thousands of papers for each year. It makes difficult for researchers to understand research trend of interesting domains. In our paper, we propose an automatic technology keyphrase extraction method to support researcher to understand research trend for each conference or journal. Keyphrase extraction that extracts important terms or phrases from a text, is a fundamental technology for a natural language processing such as summarization or searching, etc. Previous keyphrase extraction technologies based on pretrained language model extract keyphrases from long texts so performances are degraded in short texts like titles of papers. In this paper, we propose a techonolgy keyphrase extraction model that is robust in short text and considers the importance of the word.

  • PDF

Text Mining Analysis of News Articles Related to 'Space Hazard' ('우주 위험' 관련 뉴스 기사의 텍스트 마이닝 분석 연구)

  • Jo, Hoon;Sohn, Jungjoo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.224-235
    • /
    • 2022
  • This study aimed to confirm the status of media reports on space hazards using topic modeling analysis of media articles that are related to space hazards for the past 12 years. Therefore, Latent Dirichlet Allocation (LDA) analysis was performed by collecting over 1200 space hazards articles between 2010 and 2021 on solar storm, artificial space objects, and natural space objects from BIGKins news platform. The articles related to solar storm focused on three topics: the effect of solar explosion on satellites; effect of solar explosion on radio communication in Korea, centered on the Korean Space Weather Center; and relationship between aircrew and space radiation. The articles related to artificial space objects focused on three topics: the threat of space garbage to satellite and space stations and the transition of useful objects into space junk; the relationship between space garbage and humanity as shown in movies; and the effort of developed countries for tracking, monitoring, and disposing of space garbage. The articles related to natural space objects focused on two topics: International Space Agency's tracking and monitoring of near-Earth asteroids and the countermeasures of collisions, and the evolution and extinction of dinosaurs and mammals, with a focus on the collisions of asteroids or comets. Therefore, this study confirmed that domestic media play a role in conveying dangers of space hazards and arousing the attention of public using a total of eight themes in various fields such as society and culture, and derived education method and policy on space hazards.

A Study on the Effect of the Document Summarization Technique on the Fake News Detection Model (문서 요약 기법이 가짜 뉴스 탐지 모형에 미치는 영향에 관한 연구)

  • Shim, Jae-Seung;Won, Ha-Ram;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2019
  • Fake news has emerged as a significant issue over the last few years, igniting discussions and research on how to solve this problem. In particular, studies on automated fact-checking and fake news detection using artificial intelligence and text analysis techniques have drawn attention. Fake news detection research entails a form of document classification; thus, document classification techniques have been widely used in this type of research. However, document summarization techniques have been inconspicuous in this field. At the same time, automatic news summarization services have become popular, and a recent study found that the use of news summarized through abstractive summarization has strengthened the predictive performance of fake news detection models. Therefore, the need to study the integration of document summarization technology in the domestic news data environment has become evident. In order to examine the effect of extractive summarization on the fake news detection model, we first summarized news articles through extractive summarization. Second, we created a summarized news-based detection model. Finally, we compared our model with the full-text-based detection model. The study found that BPN(Back Propagation Neural Network) and SVM(Support Vector Machine) did not exhibit a large difference in performance; however, for DT(Decision Tree), the full-text-based model demonstrated a somewhat better performance. In the case of LR(Logistic Regression), our model exhibited the superior performance. Nonetheless, the results did not show a statistically significant difference between our model and the full-text-based model. Therefore, when the summary is applied, at least the core information of the fake news is preserved, and the LR-based model can confirm the possibility of performance improvement. This study features an experimental application of extractive summarization in fake news detection research by employing various machine-learning algorithms. The study's limitations are, essentially, the relatively small amount of data and the lack of comparison between various summarization technologies. Therefore, an in-depth analysis that applies various analytical techniques to a larger data volume would be helpful in the future.