• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.032 seconds

Effects of Collaborative Argumentation and Self-Explanation on Text Comprehension in a Concept Mapping Context (텍스트이해를 위한 개념도사용의 효과적 활용전략:협력적 논쟁과 자기설명의 상호작용 효과)

  • Kim, Jong Baeg
    • (The) Korean Journal of Educational Psychology
    • /
    • v.22 no.2
    • /
    • pp.461-478
    • /
    • 2008
  • This study attempted to test whether or not students' collaborative argumentation and explanation activity while using concept mapping did improve understanding on texts. Total of 52 college students participated in this study. They were randomly assigned to one of four experimental conditions. The experiment lasted for two or three weeks and students were tested on comprehension level of a text material that they have studied over the period. As a result, with two independent factors of explanation and collaboration, there was a significant interaction effect without main effects. That is, individual did better when they did have to explain what they were doing. However, this is not the case when students collaborate. Students in the paired condition, they did better when they do not have to explain what they were doing with concept maps. This study showed efficiency with using computerized software does not always guarantee higher understanding on text materials. Instructional contexts and variables, collaboration and explanation, needs to be considered. Collaborating with others and explaining their own learning processes should be carefully designed when they are combined with concept mapping contexts. How to minimize learning obstacles from discussing ideas with others are a critical issue for future research.

Design and implementation of malicious comment classification system using graph structure (그래프 구조를 이용한 악성 댓글 분류 시스템 설계 및 구현)

  • Sung, Ji-Suk;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A comment system is essential for communication on the Internet. However, there are also malicious comments such as inappropriate expression of others by exploiting anonymity online. In order to protect users from malicious comments, classification of malicious / normal comments is necessary, and this can be implemented as text classification. Text classification is one of the important topics in natural language processing, and studies using pre-trained models such as BERT and graph structures such as GCN and GAT have been actively conducted. In this study, we implemented a comment classification system using BERT, GCN, and GAT for actual published comments and compared the performance. In this study, the system using the graph-based model showed higher performance than the BERT.

Effect of the Web Organization and Prior Knowledge on Obtaining Various Kinds of Knowledge (웹 사이트의 구조가 다양한 층위의 지식 형성에 영향을 미치는가 - 이용자의 사전 지식을 중심으로)

  • Joo, Yeon-Kyoung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02b
    • /
    • pp.575-581
    • /
    • 2007
  • 웹사이트를 어떻게 디자인했을 때 지식을 보다 효율적으로 전달할 수 있는가에 많은 관심이 쏠리고 있다. 최근의 몇몇 커뮤니케이션 연구들은 인터넷의 독특한 정보 전달 구조인 하이퍼텍스트 구조가 정보 전달에 있어서 핵심적인 영향을 끼치고 있으며, 따라서 하이퍼텍스트를 어떤 방식으로 구조화하는지에 따라 지식의 전달 내용도 바뀔 수 있다고 주장하고 있다. 이 연구는 이러한 학자들의 의견과 궤를 같이 하여, 이용자의 사전 지식의 차이에 따라 비선형적 웹사이트 구조가 구조적인 지식과 선언적인 지식을 전달하는 데, 어떠한 차이점을 가지는지를 시험적으로 검증한 예비 조사적 연구이다. 관련된 기존 문헌 연구를 통해, 사전 지식이 높은 이용자는 선형 구조보다는 비선형 웹 구조를 통해서 구조적인 지식을 습득하는 데, 유리할 것이고 사전 지식이 낮은 이용자는 선형 구조보다는 비선형 웹구조를 통해서 학습할 때, 선언적인 지식을 습득할 확률이 높을 것이라고 예상되었다. 이를 소규모 집단 실험으로 검증한 결과, 통계적으로 유의한 수준은 아니었지만 비선형적 웹구조는 구조적인 지식을 증가시키는 경향성이 발견되었다. 또한 사전 지식이 높은 이용자 역시 비선형 구조에서 높은 구조적 지식을 습득하는 경향성이 있었다. 그러나 선언적인 지식의 경우에는 웹 구조의 영향이 크게 상관이 없는 것으로 나타났다.

  • PDF

Topic Analysis of Papers of JKIICE Using Text Mining (텍스트 마이닝을 이용한 한국정보통신학회 논문지의 주제 분석)

  • Woo, Young Woon;Cho, Kyoung Won;Lee, KwangEui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.74-75
    • /
    • 2017
  • In this paper, we analyzed 3,668 papers of JKIICE from 2007 to 2016 using text mining methods for understanding research fields. We used web scraping programs of Python language for data collection, and utilized topic modeling methods based on LDA algorithm implemented by R language. In the results, we verified that representative research areas of JKIICE could be downsized to 9 areas only by the analysis though the submission areas were 19 areas by 2016.

  • PDF

A Clustering-based Undersampling Method to Prevent Information Loss from Text Data (텍스트 데이터의 정보 손실을 방지하기 위한 군집화 기반 언더샘플링 기법)

  • Jong-Hwi Kim;Saim Shin;Jin Yea Jang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.251-256
    • /
    • 2022
  • 범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.

  • PDF

Strategies on Text Screen Design Of The Electronic Textbook For Focused Attention Using Automatic Text Scroll (자동 스크롤 가능을 이용한 주의력 집중을 위한 웹기반 전자교과서 텍스트 화면 설계전략)

  • Kwon, Hyunggyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.4
    • /
    • pp.134-145
    • /
    • 2002
  • The purpose of this study is to present the functional and technical solutions for text learning of web-based textbook in which each letter has its own focal point. The solutions help learners not to lose the main focus when eye moves to the next letter or line. The text screen of the electronic textbook automatically scrolls the text to up and down or left and right directions which are preassigned by learner. It doesn't need the operation of mouse or keyboard. And learner can change scroll speed and types anytime during scrolling. Automatic text scroll function is a solution for controlling data and screen to reflect the personal favor and ability. It contains the content structure of the text(characteristics, categorizations etc.), the appearance of the text(density, size, font etc.), scroll options(scroll, speed etc.), program control type(ram resident program etc.), and the application of the screen design principles(legibility etc.). To resolve these functional problems, technical 8 phases are provided, which are environment setting, scroll option setting, copy, data analysis, scroll coding, centered focus coding, left and right focus coding, implementation. The learner can focus on text without dispersion because the text focal points stay in the fixed area of screen. 1bey read the text following their preferences for fonts, sizes, line spacing and so on.

  • PDF

Classification Modeling for Predicting Medical Subjects using Patients' Subjective Symptom Text (환자의 주관적 증상 텍스트에 대한 진료과목 분류 모델 구축)

  • Lee, Seohee;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • In the field of medical artificial intelligence, there have been a lot of researches on disease prediction and classification algorithms that can help doctors judge, but relatively less interested in artificial intelligence that can help medical consumers acquire and judge information. The fact that more than 150,000 questions have been asked about which hospital to go over the past year in NAVER portal will be a testament to the need to provide medical information suitable for medical consumers. Therefore, in this study, we wanted to establish a classification model that classifies 8 medical subjects for symptom text directly described by patients which was collected from NAVER portal to help consumers choose appropriate medical subjects for their symptoms. In order to ensure the validity of the data involving patients' subject matter, we conducted similarity measurements between objective symptom text (typical symptoms by medical subjects organized by the Seoul Emergency Medical Information Center) and subjective symptoms (NAVER data). Similarity measurements demonstrated that if the two texts were symptoms of the same medical subject, they had relatively higher similarity than symptomatic texts from different medical subjects. Following the above procedure, the classification model was constructed using a ridge regression model for subjective symptom text that obtained validity, resulting in an accuracy of 0.73.

A Deep Learning-based Depression Trend Analysis of Korean on Social Media (딥러닝 기반 소셜미디어 한글 텍스트 우울 경향 분석)

  • Park, Seojeong;Lee, Soobin;Kim, Woo Jung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.91-117
    • /
    • 2022
  • The number of depressed patients in Korea and around the world is rapidly increasing every year. However, most of the mentally ill patients are not aware that they are suffering from the disease, so adequate treatment is not being performed. If depressive symptoms are neglected, it can lead to suicide, anxiety, and other psychological problems. Therefore, early detection and treatment of depression are very important in improving mental health. To improve this problem, this study presented a deep learning-based depression tendency model using Korean social media text. After collecting data from Naver KonwledgeiN, Naver Blog, Hidoc, and Twitter, DSM-5 major depressive disorder diagnosis criteria were used to classify and annotate classes according to the number of depressive symptoms. Afterwards, TF-IDF analysis and simultaneous word analysis were performed to examine the characteristics of each class of the corpus constructed. In addition, word embedding, dictionary-based sentiment analysis, and LDA topic modeling were performed to generate a depression tendency classification model using various text features. Through this, the embedded text, sentiment score, and topic number for each document were calculated and used as text features. As a result, it was confirmed that the highest accuracy rate of 83.28% was achieved when the depression tendency was classified based on the KorBERT algorithm by combining both the emotional score and the topic of the document with the embedded text. This study establishes a classification model for Korean depression trends with improved performance using various text features, and detects potential depressive patients early among Korean online community users, enabling rapid treatment and prevention, thereby enabling the mental health of Korean society. It is significant in that it can help in promotion.

Comparison of the Features of Science Language between Texts of Earth Science Articles and Earth Science Textbooks (지구과학 논문과 지구과학 교과서 텍스트의 과학 언어적 특성 비교)

  • Lee, Jeong-A;Kim, Chan-Jong;Maeng, Seung-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.367-378
    • /
    • 2007
  • The purpose of this study is to investigate the features of science language in Earth science textbooks and Earth science research articles. We examined two Earth science textbooks and two Earth science articles using the taxonomy of scientific words, the text structure analysis of explanations, the analysis of conjunctive relations and reasoning, and the function of conjunction. The results showed that school science language revealed in Earth science textbooks had high proportion of naming words and the text structures in which definition/exemplification structure and description structure were dominant. Also, internal relations that showed additional arrangement rather than logical inference, were predominant in Earth science textbooks. However, scientists' science language revealed in the Earth science articles had more proportion of process words and concept words than the Earth science textbooks and the schematic structure of explanation texts, such as orientation - implication sequence - conclusion. In addition, the text structures in each sentences of implication -sequence showed cause/effect or problem-solving after description structures. Also each sentences expressed causal or abductive reasoning through the internal relations using verbs or adverbial inflection. It is necessary that we bridge the gap between the two languages for students' authentic use of science language. For the bridging, we propose "interlanguage", which mediates between school science language and scientists' language.

The Effectiveness of Foreign Language Learning in Virtual Environments and with Textual Enhancement Techniques in the Metaverse (메타버스의 가상환경과 텍스트 강화기법을 활용한 외국어 학습 효과)

  • Jeonghyun Kang;Seulhee Kwon;Donghun Chung
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.155-172
    • /
    • 2024
  • This study investigates the effectiveness of foreign language learning through diverse treatments in virtual settings, particularly by differentiating virtual environments with three textual enhancement techniques. A 2 × 3 mixed-factorial design was used, treating virtual environments as within-subject factors and textual enhancement techniques as between-subject factors. Participants experienced two videos, each in different virtual learning environments with one of the random textual enhancement techniques. The results showed that the interaction between different virtual environments and textual enhancement techniques had a statistically significant impact on presence among groups. In examining main effects of virtual environments, significant differences were observed in flow and attitude toward pre-post learning. Also, main effects of textual enhancements notably influenced flow, intention to use, learning satisfaction, and learning confidence. This study highlights the potential of Metaverse in foreign language learning, suggesting that learner experiences and effects vary with different virtual environments.