웹을 저작 공간으로 사용한 Wiki Wiki Web[4]은 텍스트 자원을 사용한 복잡하고 다양한 이야기의 표현이 가능하며 실시간은 아니지만 시분할 방식의 이야기 공동 저작과 감상을 지원한다. 하지만 이러한 도구를 사용하여 그림일기와 같은 그림과 텍스트 내공이 복합된 이야기를 저작하는 경우, 저작자는 텍스트 자원을 사용하여 이야기를 구성해야 하기 때문에 그림이 표현되어야 하는 부분을 표현할 수 없으며 공동저작을 손쉽게 하는 자동화 도구를 제공하지 않기 때문에 저작도구의 사용에 대한 불편함을 느끼게 된다. 이처럼 그림일기나 동화 등의 다양한 형태의 이야기를 표현하기 위해서 사용자가 멀티미디어 자원들을 사용하도록 하고 손쉬운 이야기를 구성하도록 하는 디지털 스토리텔링 저작도구가 요구된다. 본 논문에서는 저작자가 온라인상에서 직접 그린 스케치 영상을 사용하여 이야기의 배경과 캐릭터를 만들고 그것을 이야기 저작 소재로 사용하도록 하는 배경 및 액터 생성도구를 제공하고 다양한 형태의 이야기를 저작자가 손쉽게 표현하도록 하는 이야기 구성의 자동화 도구를 제공하면서 여러 사용자들이 실시간으로 이야기 저작과 감상에 공동으로 참여하도록 하여 저작된 결과를 애니메이션으로 감상할 수 있도록 하는 디지털 스토리텔링 도구를 설계하고 구현하였다.
Journal of the Korean Society for information Management
/
v.6
no.1
/
pp.93-117
/
1989
The objective of this study is to design an automatic abstracting system through the analysis of natural language texts. For this purpose a knowledge-based system operating on the basis of domain knowledge was developed. The procedure of generating an abstract consists of three steps: (1) A knowledge-base containing domain knowledge necessary to understand a text is constructed using frame and semantic network structures,and preliminary abstracts are prepared for various cases. (2) Input text is analysed on the basis of domain knowledge in order to extract information filling slots of the abstract with. (3) A Preliminary abstract corresponding to the input text is called and filled with the information, completing the abstract.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.9
/
pp.1135-1143
/
2021
Recently, text collection using a web crawler for big data analysis has been frequently performed. However, in order to collect only the necessary text from a web page that is complexly composed of numerous tags and texts, there is a cumbersome requirement to specify HTML tags and style attributes that contain the text required for big data analysis in the web crawler. In this paper, we proposed a method of extracting text using the frequency of text appearing in web pages without specifying HTML tags and style attributes. In the proposed method, the text was extracted from the DOM tree of all collected web pages, the frequency of appearance of the text was analyzed, and the main text was extracted by excluding the text with high frequency of appearance. Through this study, the superiority of the proposed method was verified.
The Journal of the Convergence on Culture Technology
/
v.7
no.2
/
pp.427-436
/
2021
The purpose of this study is to implement a machine learning language model that learns literary texts. Literary texts have an important characteristic that pairs of question-and-answer are not frequently clearly distinguished. Also, literary texts consist of pronouns, figurative expressions, soliloquies, etc. They hinder the necessity of machine learning using literary texts by making it difficult to learn algorithms. Algorithms that learn literary texts can show more human-friendly interactions than algorithms that learn general sentences. For this goal, this paper proposes three text correction tasks that must be preceded in researches using literary texts for machine learning language model: pronoun processing, dialogue pair expansion, and data amplification. Learning data for artificial intelligence should have clear meanings to facilitate machine learning and to ensure high effectiveness. The introduction of special genres of texts such as literature into natural language processing research is expected not only to expand the learning area of machine learning, but to show a new language learning method.
An autonomous agent for real world should be able to recognize text in scenes. With the advancement of deep learning, various DNN models have been utilized for transformation, feature extraction, and predictions. However, the existing state-of-the art STR (Scene Text Recognition) engines do not achieve the performance required for real world applications. In this paper, we introduce a performance-improvement method through an add-on composed of an OCR (Optical Character Recognition) engine and a classifier for STR engines. On instances from IC13 and IC15 datasets which a STR engine failed to recognize, our method recognizes 10.92% of unrecognized characters.
Current text mining techniques suffer from the problem that the conventional text representation models cannot express the semantic or conceptual information for the textual documents written with natural languages. The conventional text models represent the textual documents as bag of words, which include vector space model, Boolean model, statistical model, and tensor space model. These models express documents only with the term literals for indexing and the frequency-based weights for their corresponding terms; that is, they ignore semantical information, sequential order information, and structural information of terms. Most of the text mining techniques have been developed assuming that the given documents are represented as 'bag-of-words' based text models. However, currently, confronting the big data era, a new paradigm of text representation model is required which can analyse huge amounts of textual documents more precisely. Our text model regards the 'concept' as an independent space equated with the 'term' and 'document' spaces used in the vector space model, and it expresses the relatedness among the three spaces. To develop the concept space, we use Wikipedia data, each of which defines a single concept. Consequently, a document collection is represented as a 3-order tensor with semantic information, and then the proposed model is called text cuboid model in our paper. Through experiments using the popular 20NewsGroup document corpus, we prove the superiority of the proposed text model in terms of document clustering and concept clustering.
Journal of The Korean Association of Information Education
/
v.23
no.6
/
pp.543-550
/
2019
In 2006, Janet Wing defined computational thinking and operated SW education as a formal curriculum in the UK in 2013. This study collected related research papers by using computational thinking, which has recently increased in importance, and analyzed it using text mining. In the first, CONCOR analysis was conducted with the keyword of computational thinking. In the second, text mining of the components of computational thinking was selected by the repr23esentative academic journals at domestic and foreign. As a result of the two-time analysis, first, abstraction, algorithm, data processing, problem decomposition, and pattern recognition were the core of the study of computational thinking component. Second, research on convergence education centered on computational thinking and science and mathematics subjects was actively conducted. Third, research on computational thinking has been expanding since 2010. Research and development of the classification and definition of computational thinking and components and applying them to education sites should be conducted steadily.
Bae, Sang Hoon;Jang, Chang Seong;Lee, Tae Hee;Cho, Sung Bum
Journal of vocational education research
/
v.33
no.3
/
pp.83-104
/
2014
The study examined the trends of research on Meister high schools in Korea. The study also investigated differences of research interests between the university faculty and graduate students who are the future researchers in this field. A total of 56 research articles were analyzed using the network text analysis method and the content analysis. The results showed that 56% of all studies was done to reveal the distinguishable characteristics of Meister students and teachers compared to their counterpart in vocational schools. 17.6% of studies were about school curriculum, while 14.0% of studies were on school organization and operation. Only 12.3% of studies were conducted to evaluate school performance. Quantitative studies outnumbered qualitative ones. Based on the results, this study suggested implications for policies and future research on meister high school.
Objective: The purpose of the study was to investigate the current status of early childhood teachers' picture book reading activities and their knowledge and utilization of the picture book peritexts. Methods: The subjects were 276 early childhood teachers in Seoul metropolitan area. The survey was conducted to investigate early childhood teachers' current status of picture book reading activities as well as their knowledge and utilization of picture book peritexts. The collected data were analyzed using SPSS Statistics 21.0 program to analyze descriptive statistics such as frequency and percentage. Results: As results, most early childhood teachers recognized that reading picture books to young children was very important and responded that the purpose of reading picture books was to develop children's imagination and creativity. In terms of early childhood teachers' knowledge on 12 peritexts, some peritexts such as 'title', 'cover' and 'title page' were recognized at high level but other peritexts such as typography and layout were at low level. In addition, early childhood teachers' utilization level of peritexts were shown as relatively low compared to their knowledge level. Conclusion/Implications: The study results imply that early childhood teachers need to be informed of the concepts of picture book peritexts and encouraged to utilize peritexts while reading picture books to young children.
Proceedings of the Acoustical Society of Korea Conference
/
1994.06c
/
pp.235-240
/
1994
모음 검출을 통하여 미리 등록한 단어가 아닌 경우에도 화자를 인식할 수 있도록 특징 파라메터를 개발하고, 실용화가 가능하도록 처리 방법을 간략화한 텍스트 독립 화자 인식 연구를 진행하였다. 이를 위해서, 화자가 발성한 음성에서 모음을 검출하여 화자인식에 사용하는 방법을 제안하였으며, 인식은 각 화자가 발성한 음성 신호에서 모음을 검출한 다음, 검출된 모음의 29 채널의 주파수 에너지를 퍼지값으로 효현한 후, 퍼지 추론을 적용하여 수행하였다. 실험을 위해 모음 검출 알고리듬을 개발하였으며, 화자인식의 특징 파라메터로 29 채널 주파수 에너지를 제안하였는데, 별도의 코드북 없이 사용이 가능하고, 기존의 파라메터에 비해 인식율이 높으면서도 구성 및 계산이 간단한 특징이 있다. 실험결과, 미리 작성된 표준패턴과 동일한 단어를 사용한 텍스트 의존 화자 인식 실험은 95.5% 인식율을 보였고, 표준 패턴과 다른 종류의 단어를 사용한 텍스트 독립 화자인식 실험은 94.2% 인식율을 보이고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.