• Title/Summary/Keyword: 터미널 슬라이딩 모드 제어

Search Result 9, Processing Time 0.032 seconds

Terminal Sliding Mode Control Using One Dimensional Fuzzy Rule Type Sliding Surfaces (일차원 퍼지 규칙 슬라이딩 평면을 이용한 터미널 슬라이딩 모드 제어)

  • Seo, Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.402-408
    • /
    • 2016
  • In this paper, a new approach to the terminal sliding mode control using adaptive fuzzy sliding surfaces is proposed. The idea behind this approach is to utilize an adaptive sliding surface, in which the slope of the surface is updated on line using a SISO fuzzy logic inference system. We expanded the concepts of terminal sliding mode controller and proposed the terminal sliding mode control input with continuous reaching laws. The computer simulation results have shown the improved performance of the proposed control approach in terms of a decrease in the reaching and settling times and chattering free as compared to the conventional terminal sliding mode control with a fixed sliding surface. The proposed controller has also an advantage that has less computational burden to the conventional terminal sliding mode control using one-directional fuzzy rules.

IPMSM Control Using Terminal Sliding Mode and BackStepping (터미널슬라이딩모드와 백스테핑을 이용한 IPMSM의 제어)

  • Mun, Byeong-Yun;Park, Seung-Gyu;kwak, Gun-Pyeong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1311-1312
    • /
    • 2015
  • 본 논문에서는 IPMSM의 제어에 있어거 터미널슬라이딩모드를 사용한다. 이용하여 슬라이딩 평면에서 유한한 시간 안에 오차가 0으로 수렴함을 보장하도록 제안한다. 그러나 IPMSM 부하외란의 비정합성 문제해결을 위해 백스테핑제어 기법을 적용하였다. 제안된 제어기는 백스테핑 PID제어기를 사용한 IPMSM제어 시스템과 비교할 때 강인한 특성을 갖는다.

  • PDF

Dynamic terminal sliding mode control with no singularity (특이점을 가지지 않는 다이나믹 터미널 슬라이딩 모드 제어)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.125-126
    • /
    • 2007
  • 이 논문에서는 제어 가능한 선형시스템에 대한 다이나믹 터미널 슬라이딩 모드 제어기를 설계하고자 한다. 제안된 터미널 슬라이딩 모드구조와 제어기는 추가된 다이나믹스의 스캐일링을 통해 설계되며, 추가된 다이나믹스는 모든 상태변수들이 원점에 도달한 후에야 원점에 도달하므로 특이점을 가지지 않게 된다. 그리고 전체시스템의 유한시간 안정화는 유한시간 안정에 관한 리아프노프 함수를 이용하여 증명할 수 있다.

  • PDF

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

Terminal Sliding Mode Control of Nonlinear Systems Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경망을 이용한 비선형 시스템의 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1033-1039
    • /
    • 2007
  • In this paper, we design a terminal sliding mode controller based on self-recurrent wavelet neural network (SRWNN) for the second-order nonlinear systems with model uncertainties. The terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time in comparison with the classical sliding mode control (CSMC) method. In addition, the TSMC method has advantages such as the improved performance, robustness, reliability and precision. We employ the SRWNN to approximate model uncertainties. The weights of SRWNN are trained by adaptation laws induced from Lyapunov stability theorem. Finally, we carry out simulations for Duffing system and the wing rock phenomena to illustrate the effectiveness of the proposed control scheme.

Design of Extended Terminal Sliding Mode Control Systems (확장된 터미널 슬라이딩 모드 제어기의 설계)

  • Jo, Young-Hun;Lee, Yong-Hwa;Park, Kang-Bak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • The terminal sliding mode control schemes have been studied a lot since they can guarantee that the state error gets to zero in a finite time. However, the conventional terminal sliding surfaces have been designed using power function whose exponent is a rational number between 0 and 1, and whose numerator and denominator should be odd integers. It is clearly restrictive. Thus, in this paper, we propose a novel terminal sliding surface using power function whose exponent can be a real number between 0 and 1.

Self-Recurrent Wavelet Neural Network Based Terminal Sliding Mode Control of Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템의 자기 회귀 웨이블릿 신경망 기반 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.315-317
    • /
    • 2006
  • In this paper, we design a terminal sliding mode controller based on neural network for nonlinear systems with uncertainties. Terminal sliding mode control (TSMC) method can drive the tracking errors to zero within finite time. Also, TSMC has the advantages such as improved performance, robustness, reliability and precision by contrast with classical sliding mode control. For the control of nonlinear system with uncertainties, we employ the self-recurrent wavelet neural network(SRWNN) which is used for the prediction of uncertainties. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out simulations to illustrate the effectiveness of the proposed control.

  • PDF

Nonsingular Terminal Sliding Mode Control of Overhead Crane System (오버헤드 크레인 시스템의 비특이성 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1683-1684
    • /
    • 2008
  • In this paper, a hierarchical nonsingular terminal sliding mode controller (TSMC) for overhead crane system using nonsingular terminal sliding surface (NTSS) is proposed, which can drive the error to zero in a finite time. Here, singular problem of controller is solved by NTSS. In addition, the controller has the double layer structure because the system is divided into two hierarchical subsystems. In the first layer, the nonsingular terminal sliding surfaces are hierarchically designed for each subsystem, and in the second layer, the whole sliding surface is designed as the linear combination of nonsingular terminal sliding surfaces. The asymptotic stability of the system is verified by Lyapunov analysis. Finally, we carry out simulations on the overhead crane system to illustrate the effectiveness of the proposed control method.

  • PDF

Finite-time Adaptive Non-singular Terminal Sliding-mode Control for Robot Manipulator (로봇 매니퓰레이터에 적용을 위한 유한한 시간 적응 비특이 터미널 슬라이딩 모드 제어 기법)

  • Baek, Jae-Min;Yun, Kyeong-Soo;Kang, Min-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.137-143
    • /
    • 2021
  • We propose an adaptive non-singular terminal sliding-mode control for the fast finite-time convergence (FANTSMC) in robot manipulator. The proposed FANTSMC approach is developed to be applied without singularity in robot manipulator, which has a new pole-placement control with the non-singular terminal sliding variable while generating the desirable control torque. Moreover, the switching gain is designed to suppress the time-delayed estimation error appropriately, which aims at providing the high robust tracking performance. Also, the proposed one employs one-sample delayed information to cancel out the system uncertainties and disturbances. For these reasons, it offers strong attraction within the finite time. It is shown that the tracking performance of the proposed FANTSMC approach is guaranteed to be uniformly ultimately bounded through the Lyapunov stability. The effectiveness of the proposed FANTSMC approach is illustrated in simulations, which is compared with that of the up-to-date control approach.