• Title/Summary/Keyword: 터널 효과

Search Result 857, Processing Time 0.034 seconds

A Study for the Stability Investigation of Three Parallel Tunnels Using Scaled Model Tests (삼병렬 터널의 안정성 검토를 위한 모형실험 연구)

  • Kim, Jong-Woo;Bae, Woo-Seok
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.300-311
    • /
    • 2008
  • In this study, scaled model tests were performed to investigate the stability of three parallel tunnels. Seven types of test models which had respectively different pillar widths, tunnel sectional shapes, support conditions and ground conditions were experimented, where crack initiating pressures and deformation behaviors around tunnels were investigated. In order to evaluate the effect of pillar widths on stability, various models were experimented. As results, the models with shallower pillar widths proved to be unstable because of lower crack initiating pressures and more tunnel convergences than the models with thicker pillar widths. In order to find the effect of tunnel sectional shape on stability, the models with arched, semi-arched and rectangular tunnels were experimented. Among them rectangular tunnel model was the most unstable, where the arched tunnel model with small radius of roof curvature was more stable than semi-arched one. The model with rockbolt showed higher crack initiating pressure and less roof lowering than the unsupported model. The deformation behaviors of tunnels in the anisotropic ground model were quite different from those in the isotropic ground model. Futhermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

A case study of life cycle cost analysis on high pressure sodium lamp and LED lamp for tunnel lighting (터널 조명 고압나트륨램프와 LED램프의 LCC 분석 사례 연구)

  • Lee, Gyu-Phil;Kim, Jeong-Heum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • Tunnel is the most energy-consuming structure in road due to the characteristic of using artificial lighting during day and night. Therefore, tunnel lights are being replaced by LED lamp that have advantages with respect to low power consumption. The best use of social overhead capital can be expected by considering the life cycle cost, because to tunnel structures are accompanied by a series of medium-to-long-term and continuous processes of replacing auxiliary facilities. In this study, the saving effect by LCC analysis was quantitatively analyzed by replacing tunnel light sources from high-pressure sodium lamps to LED lamps. The effect of reducing the replacement cycle by increasing the life of the lamps and the resulting maintenance cost is very significant, on replacing tunnel lighting light sources with LED lamp.

Damage Assessment of Adjacent Structures due to Tunnel Excavation in Urban Areas (II) - Focused on the Variations of Building Stiffness Ratio - (도심지 터널 굴착에 따른 인접구조물의 손상평가에 관한 연구 (II) - 지상 건물의 강성비 변화를 중심으로 -)

  • 김창용;배규진;문현구;박치현;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.81-98
    • /
    • 1999
  • The influence of tunnelling on buildings has become an important issue in urban areas. The problem is an interactive one: not only do tunnelling settlements affect existing structures, but existing structures affect tunnel-induced soil movements. In order to examine the constraint of surface settlement and the degradation of building damage parameters, 3-dimensional elasto-plastic finite element analyses are peformed. Also, in this paper, the results of the parametric studies for the variations of the damage parameters due to the ground movements are presented by utilizing 2-dimensional elasto-plastic finite element models, totally 162 models. The width of a structure, its bending and axial stiffness, its position relative to the tunnel and the depth of tunnel are considered. The interaction is shown by reference to commonly-used building damage parameters, namely angular distortion, deflection ratio, maximum building settlements, maximum differential settlements and horizontal strain. By introducing relative stiffness parameters which combine the bending and axial stiffness of the structure with its width and stiffness of soil, design curves are established. These give a guide as to the likely modification of the greenfield settlement trough caused by a surface structure. They can be used to give initial estimates of likely building damage.

  • PDF

Numerical analysis of pre-reinforced zones in tunnel considering the time-dependent grouting performance (터널 사전보강영역의 경시효과를 고려한 수치해석 기법에 관한 연구)

  • Song, Ki-Il;Kim, Joo-Won;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • Auxiliary support systems such as the reinforced protective umbrella method have been applied before tunnel excavation to increase ground stiffness and to prevent the large deformation. However, determination procedure of geotechnical parameters along the construction sequence contains various errors. This study suggests a method to characterize the time-dependent behavior of pre-reinforced zones around the tunnel using elastic waves. Experimental results show that shear strength as well as elastic wave velocities increase with the curing time. Shear strength and strength parameters can be uniquely correlated to elastic wave velocities. Obtained results from the laboratory tests are applied to numerical simulation of tunnel considering its construction sequences. Based on numerical analysis, initial installation part of pre-reinforcement and portal of tunnel are critical for tunnel stability. Result of the time-dependent condition is similar to the results of for $1{\sim}2$ days of the constant time conditions. Finally, suggested simple analysis method combining experimental and numerical procedure which considering time-dependent behavior of pre-reinforced zone on tunnel would provide reliable and reasonable design and analysis for tunnel.

  • PDF

쉴드터널의 계측시스템 구축

  • 진치섭;김성준
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.12-25
    • /
    • 1995
  • Shield 터널의 굴진에 따른 지반변위를 Real Time으로 측정하여 지반변위를 가장 작게 일으키는 굴진 Pattern을 결정하는 것이 계측시스템구축의 목적이다. 대상지반은 부산시 구포전력구 현장의 대표적인 지반이라 생각되는 Silt 층인 #11 작업구 인근과 모래층인 #7 작업구 인근에서 각각 실시하였다. 계기매설에서 계측결과분석은 1994년 6.22-11.5에 수행하였다. 계측결과로부터 얻어지는 효과는 Shield 터널굴진에 따른 지반변위의 형태와 크기를 파악할 수 있고 가장 적절한 굴진 Pattern 제시로 인근 매설물에 영향을 미치지 않는 시공을 가능케 하며 자동계측의 계기매설 및 계측기술을 습득할 수 있다. 본 전력구 공사에서는 자동계측용 Computer Software 및 관련장비를 확보하고 국내 최초의 Shield 터널 자동계측을 수행하였다.

  • PDF

A Study on the Restraint-Effect of Ground Settlement by Nail Reinforcement of Tunnel in Soft Ground (토사NATM 터널의 네일 보강에 의한 지반침하 억제효과에 관한 연구)

  • 임종철;고호성;박이근;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.51-59
    • /
    • 2000
  • 네일(또는 락볼트)은 토사터널의 NATM 시공 시 보강재로 사용되어진다. 그러나, 네일의 적절한 설치방법이 아직까지 정립되지 않았다. 본 연구에서는 네일의 길이와 위치를 변화하여, 그 효용성을 연구하였다. 그 결과, 네일이 지반보강을 위하여 토사지반에 사용될 시 경제적인 길이는 터널직경의 0.5배이다. 보강의 효용성은 네일의 위치에 따라 터널라이닝 측벽의 하부, 중부, 상부의 순서이다.

  • PDF

Structure Guide Lines of Silicon-based Pocket Tunnel Field Effect Transistor (실리콘 기반 포켓 구조 터널링 전계효과 트랜지스터의 최적 구조 조건)

  • Ahn, Tae-Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.166-168
    • /
    • 2016
  • This paper introduces about the structure guide lines of pocket tunneling Field effect transistor. As the pocket length or thickness increase, on-current $I_{on}$ increases. As the pocket thickness is less than 3nm, subthreshold swing (SS) increase. As the dielectric constants of the gate insulator increases, the performance of on-current and subthreshold swing enhances.

  • PDF

Recovery Execution in Collapsed Face of Soil-Tunnel Entrance When One-Way Driving (토사터널 1방향 굴진 시 발생한 갱구부 막장 붕락 보강사례)

  • Woo, Sang-Baik;Park, Jong-Ho;Lee, Hong-Sung;Choi, Yong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.536-549
    • /
    • 2005
  • 국내 대부분을 차지하고 있는 NATM의 주요원리는 주변지반의 지보효과를 활용하는 터널굴착공법이다. 따라서 실제 지반조건이 원설계조건 보다 역학적으로 불량한 경우 보강공법의 적용은 필수적이라 할 수 있으나, 합리적인 설계변경은 현실적으로 쉽지 않은 실정이다. 또한 현실적인 이유로 양방향으로 터널을 관통하는 설계법과 달리 종종 1방향 굴진으로 터널을 관통하는 경우가 있다. 그러나 이러한 1방향 굴진은 불가분 굴진 종점부에서 저토피 갱구를 향하게 되므로, 지반이 연약한 경ㅇ우 막장 붕괴의 위험이 매우 높은 것으로 알려져 있다. 본 터널은 설계 시 갱구부 지반을 풍화암과 연암으로 보고 설계 하였으나, 실제 굴착 시 확인된 지층은 핵석을 포함한 실트질모래(SP-SM)로 판명되었다. 더구나 터널굴진 방향에 있어서도 양방향 굴착이 아닌 저토피 갱구를 향한 1방향 굴진을 실시하였으며, 이러한 시공 중에 터널관통을 불과 19m 남겨둔 갱구부에서 막장부괴와 동시에 상부사면 함몰이 발생하였다. 본 연구는 토사터널 갱구부 1방향 굴진 시 발생한 막장붕괴 보강사례로서, 지상보강(시멘트밀크 그라우팅)과 갱내보강(방사상 FRP보강그라우팅) 그리고 인버트폐합을 실시하여 성공적으로 터널시공을 완료한 사례연구이다. 본 사례는 향후 토사터널 갱구부의 설계와 시공에 유용한 참고자료가 될 것이다.

  • PDF

Review of Subaqueous Tunneling Case Histories (국내외 해․하저터널 건설 사례 분석)

  • Choi, Seung-Beum;Lee, Sudeuk;Kim, Hyunwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.120-130
    • /
    • 2014
  • Recently, a few mega projects of subsea tunneling are completed or ongoing or under planning stage all across the world. In Korea, subsea tunnels connecting to Japan and China have been considered in the past decades. At the same time, subsea tunnels connecting to domestic islands were planned with preliminary design concepts. Development and improvement of indigenous techniques regarding subsea tunneling are essential in light of current technical level in Korea and their future impact on tunneling industry. In this paper, distinct features of subsea tunnel and construction trend of subaqueous tunnels are analyzed via case studies. Also, case studies about incidents related to subsea tunneling and required techniques to secure safety are presented.

Case Study of a Shallow Tunnelling Through Complex Strata of Sand-Gravel and Rock Mass (모래자갈과 암반의 복합지층에 시공한 저심도 터널의 사례연구)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.244-254
    • /
    • 2015
  • The tunnel is excavated through the alluvial layer composed of sand and gravel with groundwater deposited on rock. A portion of upper part of the tunnel is located in the alluvial layer and there are several buildings just above the curved section of the tunnel. It is necessary to prevent from sand-flowing into the tunnel due to low strength of the alluvial, high groundwater level and shallow depth of the tunnel from the ground surface. For this, the alluvial around the tunnel is pre-reinforced by umbrella arch method with multi-stage grouting through large diameter steel pipes or jet grouting before excavating the tunnel. The effect of the pre-reinforcement of the tunnel and the safety of the buildings are monitored by measurement of ground deformation occurred during tunnelling.