• Title/Summary/Keyword: 터널 안전 시공법

Search Result 25, Processing Time 0.018 seconds

Safe tunneling method using numerical modeling of rock blocks in long tunnels (장대터널에서의 암반 블록의 수치 모델링을 이용한 터널 안전 시공법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Since about 70 percent of the territory is mountainous, more tunnels are constructed in Korea for maximizing the development efficiency. With the increasing number of tunnel construction, safe construction in tunnels has been emerged as the utmost important subject. Recently, the number of long tunnel construction is steeply increased because of the request for high speed and straight road. In this study, a safe tunneling method using numerical modeling of rock blocks in long tunnels is proposed, and then applied to the long tunnel based on real discontinuity information observed in situ. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the safe tunneling method using numerical modeling of rock blocks. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports.

Case Study on the Impact-Echo Method for Tunnel Safety Diagnosis (터널 안전진단을 위한 충격반향법 사례 연구)

  • Shin, Sung-Ryul;Jo, Cheol-Hyun
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • For the purpose of determining the thickness of concrete lining and detect of the cavity where may be located behind tunnel lining, IE (Impact-Echo) method it effectively useful in the tunnel safety diagnosis and the quality control during the construction. As a part of case study, we applied IE method to various tunnel structure types such as road tunnel and subway tunnel constructed by NATM (New Austrian Tunnelling Method) and ASSM (American Steel Support Method). As tunnel specifications estimated from this method were compared with coring data, design drawing and other survey results, it was very good agreement with each other. In conclusion, we verified that IE method shows an accurate and reliable result. The conventional interpretation of IE method in frequency domain gives only vertical information at a certain point. However, the interpretation using time-frequency analysis and depth section imaging technique from two dimensional profiling surveys can show more reliable information about structure inside.

Norwegian Method of Tunnelling (노르웨이 터널 시공 방법)

  • 김치환;임경호;이석천
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.1-11
    • /
    • 1994
  • 현재 국내 터널의 설계와 시공은 대부분 NATM의 원리를 적용하고 있다. 그러나 터널의 설계 접근방법과 시공의 상황을 살펴보면 NATM을 국내 지질에 적용하는 것이 항상 최적이 아니라는 것을 알수 있으며, 국내 터널의 시공에 있어서도 NATM과 다른 개념의 도입과 정확한 이해가 필요하다는 것을 많은 기술자가 느끼고 있다. 따라서 보다 경제적이고 안전한 터널 시공방법의 결정을 위해 NATM의 개념과 다른 터널 설계 및 시공방법으로 노르웨이 터널 시공법(Norwegian Method of Tunnelling, NMT)을 소개하고자 한다. (중략)

  • PDF

Comparison and validation on shotcrete modelling method for the quantitative stability estimation of a tunnel (터널의 정량적 안정성 평가를 위한 숏크리트 모델링 방법 비교 검증에 관한 연구)

  • You, Kwang-Ho;Lee, Min-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2007
  • A method was suggested by You et al. (2000) to calculate safety factor of a tunnel based on numerical analysis with the shear strength reduction technique. In the method, the shotcrete is assumed to fail when its stress exceeds the allowable stress. The proposed method had been steadily developed by You et al. (2005) and Han et al. (2006). In this study, the previous routine was corrected so that tunnel construction sequences could be considered in calculating the safety factor of a tunnel. In addition, a proper way to model shotcrete is to be suggested by comparing with the previous studies.

  • PDF

Structural and Functional Measurements of a Space Truss Frame for Maintenance Works in Tunnels (터널의 유지보수공사 개선을 위한 가설 스페이스 트러스 프레임의 사용성 및 안정성 평가)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.92-98
    • /
    • 2012
  • This study shows details of a specific space truss frame structure devised to carry out maintenance and repair temporary works in tunnels. The purpose of this study is to verify structural safety and function of the innovative truss structure through an analysis tool, i.e.. ABAQUS, which is a suite of software application for finite element analysis and computer aided engineering. And then optimized size, i.e., thickness and diameter of truss members is evaluated in practice. In this study, construction methods in the temporary works are additionally represented by using the new space truss frame structure.

Stability evaluation of existing subway structure by adjacent excavation in urban tunnelling (도심지 터널 근접시공에 의한 기존 지하철 구조물 안정성 평가)

  • Han, Sangmin;Lee, Donghuk;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.339-357
    • /
    • 2021
  • As the construction of trans infrastructure using the underground tunnel have been rapidly increased, various nearby excavation of existed underground facility including subway structure has been occurred in urban tunnelling. The concern and worry relating to the safety and stability of the existed facility by nearby excavation is becoming the key issues in urban tunnelling. In this study, it was conducted for existed the subway station structure at Seoul subway line which was closely located in the new Dongbuk urban metro railway to determine the behavior characteristics of station structure according to adjacent tunnel construction. Also, it was reviewed the evaluation of the safety zone and excavation method for subway structure. And after a review of damage evaluation, track irregularities and structural calculation by using a numerical analysis, stability of the subway structure according to nearby tunnel excavation was evaluated to be secured. This study is expected to be applied as useful reference in advance if you need to review the effects of existed structure according to nearby construction in complex urban tunnelling.

Application of resistivity monitoring with tunnel excavation area (터널 굴착에 따른 전기비저항 모니터링 기술 적용)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Kim, Jung-Ho;Rae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.405-420
    • /
    • 2008
  • Resistivity survey is one of the widely used methods for the investigation of stability of the ground or bedrock around tunnel and is also used as an essential base data for stability and reduction of construction cost through first-hand approximation of rock quality at design step. Generally, the analysis of resistivity survey data is performed by single measurement. When distribution variation of groundwater around a tunnel over time is necessary for maintenance of a tunnel, resistivity monitoring is very useful survey method to grasp distribution variation of groundwater. So we performed the grid line resistivity survey to monitoring resistivity variation for six times. And we also tried to evaluate application possibility of the resistivity monitoring for construction safety through providing detailed information on fault zones.

  • PDF

Nonlinear Seismic Performance Evaluation of an Operating TBM(Tunnel Boring Machine) Tunnel (공용 중인 TBM(Tunnel Boring Machine) 터널의 비선형 내진성능 평가 )

  • Byoung-Il Choi;Dong-Ha Lee;Jin-Woo Jung;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.1-9
    • /
    • 2024
  • Recently, the TBM tunnel construction method has been in the spotlight as tunnel excavation under urban areas such as the Metropolitan Rapid Transit (GTX) has been actively carried out. Although the construction cost of the TBM tunnel is high, it is relatively free from noise and vibration compared to the NATM tunnel method, so it is well known to be a suitable construction method for application to the lower part of urban areas. In particular, when the stratum passes through the shallow section, it can have a great impact on existing upper structures and obstacles, so accurate numerical analysis considering various variables is required when designing the TBM tunnel. Unlike other tunnel construction methods, TBM tunnels build linings by assembling factory-made segments. Unlike NATM tunnels, segment lining has connections between segments, so how to the connection status between segments is reflected can have a significant impact on securing the reliability of analysis results. Therefore, in this paper, a segment joint model(Janssen Model) was applied to the lining for seismic analysis of the TBM tunnel, and the tunnel's behavioral characteristics were analyzed after numerical analysis using nonlinear models according to urban railway seismic design standards.

Development of Mechanical Construction Method of Road Deck Middle Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 중간슬래브의 기계화 시공법 개발)

  • Lee, Doo Sung;Kim, Young Jin;Kim, Tae Kyun;Kim, Chang Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.451-460
    • /
    • 2019
  • It is critical for Korea to make effective use of limited space as it has dense population and high traffic volume compared to its terrestrial area. To resolve this issue, diverse types of underground structures have increasingly been applied so far, and one of the most representative structures is double-deck tunnel. The construction period of the middle slab in the double deck tunnel constructed at the great depth can be considered as an important part after the tunnel lining construction in the whole process. In order to minimize the construction period required for construction of the middle slab in the double deck tunnel, it was proposed a method of the precast intermediate slab. In this study, it is suggested a mechanical construction process with dedicated equipments developed to improve the safety and the workability of erection of the precast middle slab than the current construction method using the existing mobile crane.

Evaluation of the influence of pillar width on the stability of a twin tunnel (필라폭이 병설터널의 안정성에 미치는 영향 평가)

  • You, Kwang-Ho;Kim, Jong-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.115-131
    • /
    • 2011
  • Recently, considering the aspects of disaster prevention and environmental damage, the construction of a twin tunnel is increasing. When constructing a twin tunnel, the stresses are concentrated at the pillar so that stability of the tunnel is decreased. Since the previous studies on the behavior of a twin tunnel pillar are mainly restricted to the estimation of the tunnel behavior and the analysis of surface settlement, there is a limit to a quantitative stability estimation of the pillar. Therefore, it was quantitatively investigated how the pillar width of a twin tunnel affects its stability. To ensure this end, global tunnel safety factors obtained numerically using shear strength reduction technique, local safety factors of a pillar using the equation that Matsuda et al. suggested, and strength/stress ratios of the pillar were estimated and their results were analyzed for two sections with different rock covers. For a reasonable design of a twin tunnel pillar, it was turned out that strength/stress ratio, the local pillar safety factor, and global tunnel safety factor should be used interrelatedly rather than independently.