• Title/Summary/Keyword: 터널 모형실험

Search Result 335, Processing Time 0.024 seconds

A Study of Smoke Movement in Tunnel Fires (터널내에서 화재 발생시 연기 거동에 대한 연구)

  • 김상훈;김성찬;김충익;유홍선
    • Fire Science and Engineering
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2000
  • In this study, reduced-scale experiments as the alternative to a real-scale fire test were conducted to understand fire properties in tunnel, and their results were compared with those of numerical simulation. The 1/20 scale experiments were conducted under the Froude scaling since smoke movement in tunnel is governed by buoyancy farce. A numerical simulations were on performed 3D unstructured meshes with PISO algorithm and buoyant plume models. Results showed that data was in reasonable agreement with the numerical data of smoke velocity, temperature distribution, and clear height.

  • PDF

Tunnel Pressure acting on Shallow Tunnel in Unconsolidated Ground (미고결 저토피 터널에 작용하는 토압에 관한 연구)

  • Lee, Jae-Ho;Akutagawa, Shinish;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.453-463
    • /
    • 2007
  • Terzaghi's tunnel pressure theory is generally used to estimate primary design pressures on tunnel support for shield and urban NATM tunnels until now. A trial is made in this paper to investigate the interaction between the ground deformation behavior and Terzaghi's tunnel pressure, which assumes pound's limit (or critical) state, by considering results of 'Terzaghi's tunnel pressure theory. two-dimensional reduced-scale model tunnel tests and nonlinear numerical analysis based on strain softening modeling. A full understanding between tunnel pressure and ground deformation behavior under the tunnel excavation and an effective utilization of this interaction lead to an economical tunnel support design and a safe construction of tunnel.

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

Model Tests Investigating the Ground Movements Associated with Twin Side-by-Side Tunnel Construction in Clay (점성토 트윈 병렬 터널로 인한 지반침하 연구를 위한 모형실험)

  • Ahn, Sung-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.77-85
    • /
    • 2009
  • This paper describes the findings obtained from a research project aimed at investigating, via 1 g laboratory model tests, the ground movements caused by multiple side-by-side (sbs) tunnel construction in clay. The ground movements above a second tunnel showed different trends from those observed above a first tunnel. These trends include an increase in the overall volume loss, and a widening of the settlement troughs on the near limb of the trough accompanied by a shift of the maximum settlement towards existing tunnel. This would suggest that the use of simple predictive methods of adopting a Gaussian curve for analysing the ground settlements associated with twin (sbs) tunnel construction is not appropriate. Therefore the current paper adopts a method that modifies the Gaussian curve approach in order to improve the predictions. This paper comments on the parameter selection involved with adopting this new method to apply it to full-scale field situations, and also discusses its limitations.

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.

Construction of the Smoke Exhaust System and Its Applicability by the Fire Model Test for a Bidirectional Tunnel (대면교행터널에서 배연시스템의 구축과 화재모형실험에 의한 적정성 평가)

  • Lee Sang-Eun;Lee Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.452-461
    • /
    • 2005
  • In a bidirectional tunnel, the accident rate is 1.5 times as high as that of one directional tunnel , the risk of a fire is increased. On fire, there is a problem that the jet fan should not be operated until completion of refuge. To be special, as the great damages occur owing to the expansion of smoke in long tunnels, there is a need to minimize fatality by constructing cross passage and smoke removal system. This study aims at verifying the efficiency of smoke exhaust system through fire propagation simulation as well as scale model test. The results show that completion of escape through emergency exit requires 335 seconds, while addition of smoke exhaust system reduce the escape time to 185 seconds. Also, near the fire source temperature decreased by about $60^{\circ}C$. Without the exhaust system, fire propagation speed was in the range of 0.36 and 0.82 m/s, and it dropped to $0.27\~0.58\;m/s$ with the exhaust system on. Taking into account the escape speed of tunnel users, usually $0.7\~1.0\;m/s$, the emergency exit built every 150m is sufficient for the safe egress. The ultimate goal of this study is to provide fundamental information for the smoke exhaust system in bidirectional tunnels.

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.171-174
    • /
    • 2010
  • 도로터널에서의 미분무수 소화시스템의 적용 가능성을 검토하기 위해 실물 화재 실험을 수행하였다. 적용된 화원은 실물 승용차 화재와 유류화재를 모사한 화원면적 $1.4m^2$의 heptane pool 화재이며, 기존 도로터널에 설치된 저압 물분무 시스템과 고압 미분부수 소화시스템과의 냉각효과 비교실험을 수행하였다. 도로터널 내의 환기조건을 구현하기 위해 실물모형 터널의 한 편에 터널 유속(0.9~3.8 m/sec 범위) 발생장치를 설치하였으며, 화원에서 하류 방향으로 터널 내 온도분포를 측정하였다. 실험 결과 1/5의 유량을 사용하는 고압 미분무수 소화시스템은 저압 물분무 시스템과 동등한 수준의 냉각효과를 보였다.

  • PDF

A Study on the Model Experimet and MLZ Model Analysis for Predicting Fire Behavier in Road Tunnel (도로터널에서의 화재성상 예측을 위한 축소모형실험 및 MLZ모델 분석에 관한 연구)

  • Han, Jung-Chul;Lee, Ju-Hee;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.294-297
    • /
    • 2012
  • 본 연구는 MLZ을 활용하여 도로터널의 다양한 화재시나리오별 화재성상예측을 목적으로 1/20 Scale 모형실험을 통하여 소형차, 버스화재 시 FAN의 작동 비작동, 소형차 2대 직렬 병렬화재, 소형차 2대+버스 혼합 화재실험을 바탕으로 FAN작동시 배기구 방향으로 고온의 열기층이 생성됨을 확인하였다. 축소모형실험과 MLZ 해석결과를 비교하여 화원으로부터의 약 20m 정도의 이격거리부분 온도가 유사하게 나타났고, 시간별 온도분포를 확인한 결과 플래시오버 이전단계에 피난계획을 세우는 단계에서 예측이 가능했다.

  • PDF

Experimental Study on the Determination of Critical Velocity for the Case of Fire in Long Traffic Tunnels (장대 교통터널 화재시 임계속도 결정에 관한 실험적 연구)

  • Yoon Chanhoon;Yoon Sungwook;Yoo Yongho;Kim Jin
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.85-94
    • /
    • 2006
  • In this study, scaled model tests were carried out to decide the optimal critical velocity, to prevent back layering in the case of fire in a long traffic tunnel. Realistic estimates were made for the time required for people to escape ken the tunnel and far the time required by the ventilation operator to increase the system speed to full capacity. The analysis, predicts that the emergency ventilation will start about 240 seconds after the tunnel fire. It was also found that prevention of back layering would occur within 4 minutes after fan operation. To find out optimal critical velocity, a 1/50 scaled model tunnel(diameter : 0.2 m and length : 20 m) based on the Froude similarity technique was constructed. Changing $\beta$ values in the Tetzner's equation, smoke propagation was observed. From the experiment, it was concluded that using a $\beta$ value of 0.5 to prevent back layering successfully allowed time for safe evacuation.

Analysis of Stream Characteristics at Tangential Intake Structure of Deep Underground Strom Water Tunnel (대심도 빗물배수터널의 접선식 유입구 흐름특성 분석)

  • Kim, Jung-Soo;Kim, So-Young;Choi, Tea-Soon;Yoon, Sei-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.604-604
    • /
    • 2012
  • 국지성 집중호우에 따른 도심지 내수 침수 피해의 주원인으로 하수관거의 설계기준을 초과하는 강우가 침수피해의 주요 원인이며, 도심화로 인해 불투수 면적이 증가함에 따라 유출되는 시간이 짧아 저지대의 피해는 불가피하다. 2010년과 2011년에 100년 이상의 강우사상이 서울시에 연이어 나타나면서 집중호우로 인한 피해지역이 유사하게 나타났으며, 광화문 거리의 연이은 침수는 현재 서울시의 하수관거의 용량과 빗물펌프장 및 저류조 시설로 구성된 기존 수방대책의 한계점을 보이고 있다. 이에 서울시는 광화문 일대의 배수능력을 향상시키기 위하여 효자배수분구 빗물배수터널을 계획하고 있다. 일본, 미국 및 유럽 등지에서는 대심도 지하수로 시설에 대한 수리실험 및 수치 연구를 바탕으로 다양한 지하방수로가 건설되어 국지성 집중 강우에 대해 적절히 대응하고 있으나, 국내의 경우에는 대심도 지하방수로 시설에 대한 연구가 미비하여 지하방수로 설계 지침 및 기술적 자료가 부족한 실정이다. 그러므로 대심도 빗물배수터널 시설에서의 흐름특성 분석에 관한 수리실험 및 수치해석 등의 구체적인 연구가 필요하다고 판단된다. 본 연구에서는 수리모형 실험의 물질적 및 시간적 한계를 극복하기 위하여 일반적으로 3차원 유체거동의 특성분석에 많이 사용되는 Fluent 6.3 모형을 이용하여 대심도 빗물배수터널 시설의 접선식 유입구에 대한 흐름특성을 수치모의 하였다. 접선식 유입구 및 수직갱(drop shaft)에 대한 기하 모형의 격자망은 수치해석의 안정성 확보를 위하여 그림 1과 같이 6면체 격자로 구성하였다. 맨홀 내의 다상유동을 고려하기 위하여 VOF(Volume of Fluid) Scheme을 적용하였으며, 수치해석 방법으로는 비정상류, 1st order implicit method를 사용하였다. Fluent에서의 난류 흐름을 계산하는 방법에는 난류 운동에너지와 난류 에너지 소산율 $\epsilon$의 전달 방정식을 도입한 k-$\epsilon$ 난류 모형을 채택하였다.

  • PDF