• Title/Summary/Keyword: 터널조사

Search Result 875, Processing Time 0.02 seconds

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Thermal Stratification and Heat Loss in Underground Thermal Storage Caverns with Different Aspect Ratios and Storage Volumes (지하 열저장 공동의 종횡비와 저장용량에 따른 열성층화 및 열손실)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.308-318
    • /
    • 2013
  • Thermal stratification in heat stores is essential to improve the efficiency of energy storage systems and deliver more useful energy on demand. It is generally well known that the degree of thermal stratification in heat stores varies depending on the aspect ratio (the height-to-width ratio) and size of the stores. The present study aims to investigate the effect of the aspect ratio and storage volume of rock caverns for storing hot water on thermal stratification in the caverns and heat loss to the surroundings. Heat transfer simulations using a computational fluid dynamics code, FLUENT were performed at different aspect ratios and storage volumes of rock caverns. The variation of thermal stratification with respect to time was examined using an index to quantify the degree of stratification, and the heat loss to the surroundings was evaluated. The results of the numerical simulations demonstrated that the thermal stratification in rock caverns was improved by increasing the aspect ratio, but this effect was not remarkable beyond an aspect ratio of 3-4. When the storage volume of rock caverns was large, a higher thermal stratification was maintained for a relatively longer time compared to caverns with a small storage volume, but the difference in thermal stratification between the two cases tended to decrease as the aspect ratio became larger. In addition, the numerical results showed that the heat loss to the surrounding rock tended to increase with an increase in aspect ratio because the surface area of rock caverns increased as the aspect ratio became larger. The total heat loss from multiple small caverns with a reduced storage volume per cavern was larger compared to a single cavern with the same total storage volume as that of the multiple caverns.

Dependency of Phonon-limited Electron Mobility on Si Thickness in Strained SGOI (Silicon Germanium on Insulator) n-MOSFET (Strained SGOI n-MOSFET에서의 phonon-limited전자이동도의 Si두께 의존성)

  • Shim Tae-Hun;Park Jea-Gun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.9-18
    • /
    • 2005
  • To make high-performance, low-power transistors beyond the technology node of 60 nm complementary metal-oxide-semiconductor field-effect transistors(C-MOSFETs) possible, the effect of electron mobility of the thickness of strained Si grown on a relaxed SiGe/SiO2/Si was investigated from the viewpoint of mobility enhancement via two approaches. First the parameters for the inter-valley phonon scattering model were optimized. Second, theoretical calculation of the electronic states of the two-fold and four-fold valleys in the strained Si inversion layer were performed, including such characteristics as the energy band diagrams, electron populations, electron concentrations, phonon scattering rate, and phonon-limited electron mobility. The electron mobility in an silicon germanium on insulator(SGOI) n-MOSFET was observed to be about 1.5 to 1.7 times higher than that of a conventional silicon on insulator(SOI) n-MOSFET over the whole range of Si thickness in the SOI structure. This trend was good consistent with our experimental results. In Particular, it was observed that when the strained Si thickness was decreased below 10 nm, the phonon-limited electron mobility in an SGOI n-MOSFT with a Si channel thickness of less than 6 nm differed significantly from that of the conventional SOI n-MOSFET. It can be attributed this difference that some electrons in the strained SGOI n-MOSFET inversion layer tunnelled into the SiGe layer, whereas carrier confinement occurred in the conventional SOI n-MOSFET. In addition, we confirmed that in the Si thickness range of from 10 nm to 3 nm the Phonon-limited electron mobility in an SGOI n-MOSFET was governed by the inter-valley Phonon scattering rate. This result indicates that a fully depleted C-MOSFET with a channel length of less than 15 m should be fabricated on an strained Si SGOI structure in order to obtain a higher drain current.

Study on the Allowable Limit of Blasting-induced Vibration for Road Structures and Facilities (도로구조물의 발파진동 허용기준에 관한 연구)

  • Son, Moorak;Hong, Doopyo;Kwon, Ohcheol;Jung, Yeunkwun;Hwang, Youngcheol;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.27-40
    • /
    • 2014
  • This paper is to provide the allowable limit blasting-induced vibration for road structures and facilities. For this purpose, first of all, this study examined various allowable limits of different structures from domestic and foreign countries, investigated related problems of the limits used in the country, and suggested the measures to minimize the related problems. Furthermore, this study proposed the blasting-induced vibration limit of road structures and facilities that could be used in the country from comparing and analyzing the various limits from foreign countries. To verify the proposed limit for a practical use in the field, field cases that had both a vibration magnitude and a damage level were collected and they were compared with the proposed limit. In addition, the proposed limit was also compared with the results of analytical and numerical analyses. The comparison and analysis indicated that the proposed limit of different road structures and facilities is valid for the practical use in the field. From this study, the proposed limit is expected to be used as the limit to estimate the damage levels of road structures and facilities due to blasting-induced vibrations in the field.

Mineralogical Characteristics of Calcite observed in the KAERI Underground Research Tunnel (고준위폐기물 지하처분연구시설(KURT)에서 관찰되는 방해석의 광물학적 특징)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Cho, Won-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.239-246
    • /
    • 2006
  • KAERI Underground Research Tunnel (KURT) was recently constructed through the site investigation from the yea. of 2003 at KAERI site, Dukjin-dong, Yuseong-gu, Daejeon city. The geo-logic setting of the site has been slightly metamorphosed. There are small fractures developed in the rock and several kinds of secondary filling minerals exist in the fractures. We examined mineralogical characteristics of fracture-filling calcite, which is not only largely distributed, but also can significantly affect the radionuclides migration. The calcite is found along fractures like other secondary minerals, forming thick veins in part. Most calcite-filled fractures contain quartz, iron oxides, and dolomite as minor minerals. The calcite crystals show an characteristic appearance with an uniformly oriented growth, coated with goethite on the edge and the etch-pit sites of their surface. Some calcite crystals have been newly formed by the precipitation of elements dissolved from the tunnel shotcrete wall, and their morphology changed according to the chemistry and flow of groundwater. The calcite can modify the groundwater chemistry and significantly affect the sorption behavior of radionuclides. The characteristic crystal structure and surface morphology of the calcite examined in the KURT site will be used as important basic data for the radionuclide migration experiment in the future.

A Study on the Formation and Change in the Mordern Sajik Park (근대 사직공원의 형성과 변천)

  • Kim, Seo-Lin;Kim, Hai-Gyoung;Park, Mi-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.4
    • /
    • pp.120-131
    • /
    • 2014
  • Sajikdan(a sort of national shrine in Korea) built at the time of foundation of Joseon was entrenched into Sajik Park going through Japanese colonial era and recently the efforts to restore it is in progress. The details of change in Sajikdan in terms of diachronic analysis are as follows: Firstly, the first period refers to one prior to Japanese colonial era from the first king (also named as "Taejo" in Korean) of the Joseon Dynasty, during which it secured and strengthened the presence as a place for performing important national rites in a nation. It was built on the foot of Inwangsan Mt. at the time of the first king in Joseon Dynasty at first, was destroyed fully by fire during a Japanese Invasion period to Korea(1592-98) and afterward its ancestral ritual facilities were completed under the regime of Youngjo. However, as Japanese intervention coming to the fore, its place was destroyed and then ancestral rites were also abolished in 1908. Secondly, next period falls on 1910 to 1944 when it was transformed and entrenched into a park by the Japanese Empire. While facilities related to a park and an heterogeneous building around the part of boundary were set up, the area of altar, a ritual house and d door of Sajikdan were also designated as historical remains and treasures. Thirdly, this period refers to one from Korea's liberation year from Japanese colony(1945) to the year of 1984 when it had a mixed placeness with the statues, monuments and buildings with heterogeneous nature built. Furthermore, a door of Sajikdan was removed and reconstructed over twice due to opening of Sajik Tunnel. Fourthly, a final period falls on 1985 to the present when efforts are in progress to restore the historicity and symbolism of Sajikdan. A plan for restoration is promoted but now is a difficult time suffering from troubles caused by residents' resistance. Scrutinized historical researches through excavation investigation and residents' understanding are required altogether for restoration of Sajikdan.

Mine Haulage System Design for Reopening of Yangyang Iron Mine using 3D Modelling (3차원 모델링을 이용한 재개광 양양철광의 운반시스템 설계)

  • Son, Youngjin;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.412-428
    • /
    • 2012
  • To achieve mine development, a large amount of data concerned with the geological structure and the ore body had to be investigated and collected through geological survey, drilling and geophysical explorations. In most previous cases, however, the data were usually analyzed two dimensionally and those results showed some limits because of their 2D presentation. Those 2D maps such as geological plane sections or longitudinal sections cause lots of difficulties in understanding the complex geological structure or the feature of ore body in a spatial way. In this study, research area was set on the abandoned Yangyang iron mine in Korea and the Sugaeng ore body within the mine was selected as the research target to design a mine haulage system for reopening. A 3D mine model of this area was tried to be constructed using a 3D modelling software, GEMS. An accurate 3D model including the ore body, the geological structure, the old underground mine drifts and the new mine drifts was constructed under the purpose of reopening of the abandoned iron mine. Especially, mine design for trackless haulage system was conducted. New inclines and drifts were planned and modelled 3 dimensionally considering the utilization of old drifts and shaft. In addition to the 3D modelling, geostatistical technique was adopted to generate a spatial distribution of the ore grade and the rock physical properties. 3D model would be able to contribute in solving problems such as evaluating ore reserves, planning the mine development and additional explorations and changing the development plans, etc.

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

A Fundamental Study on Backfilling and Monitoring System for Stability of Underground Mine Openings (채굴공동의 안정성 유지를 위한 채움재의 충전과 계측시스템 구축에 관한 기초연구요)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.407-424
    • /
    • 2019
  • To prevent possible accidents by surface subsidence, backfilling operation is known to be one of the most effective methods for ensuring the long-term ground stability because it can eliminate fundamentally the origin of underground mine opening collapse. Also, for effective backfilling of underground mine opening, it is necessary to keep monitoring of backfilled mine opening for analyzing several factors such as filling effect with change of backfill material and characteristics of backfill material. Therefore, in this study, a monitoring system which consists of measuring device and software program has developed to examine the performance of backfilling operation and verify to field applicability to underground mine. Sensors for measuring device have been selected through study of recent research papers and mock-up test has been performed to verify the system compliance. Also, monitoring result of the mock-up test compared to case studies in some countries. From monitoring result fo the mock-up test compared to case studies in some countries, consequently, it was concluded that the developed real-time monitoring system had ensured filed applicability in the underground mine.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF