Browse > Article

Dependency of Phonon-limited Electron Mobility on Si Thickness in Strained SGOI (Silicon Germanium on Insulator) n-MOSFET  

Shim Tae-Hun (Department of Electrical and Elextronic Engineering, Hanyang University)
Park Jea-Gun (Department of Electrical and Elextronic Engineering, Hanyang University)
Publication Information
Abstract
To make high-performance, low-power transistors beyond the technology node of 60 nm complementary metal-oxide-semiconductor field-effect transistors(C-MOSFETs) possible, the effect of electron mobility of the thickness of strained Si grown on a relaxed SiGe/SiO2/Si was investigated from the viewpoint of mobility enhancement via two approaches. First the parameters for the inter-valley phonon scattering model were optimized. Second, theoretical calculation of the electronic states of the two-fold and four-fold valleys in the strained Si inversion layer were performed, including such characteristics as the energy band diagrams, electron populations, electron concentrations, phonon scattering rate, and phonon-limited electron mobility. The electron mobility in an silicon germanium on insulator(SGOI) n-MOSFET was observed to be about 1.5 to 1.7 times higher than that of a conventional silicon on insulator(SOI) n-MOSFET over the whole range of Si thickness in the SOI structure. This trend was good consistent with our experimental results. In Particular, it was observed that when the strained Si thickness was decreased below 10 nm, the phonon-limited electron mobility in an SGOI n-MOSFT with a Si channel thickness of less than 6 nm differed significantly from that of the conventional SOI n-MOSFET. It can be attributed this difference that some electrons in the strained SGOI n-MOSFET inversion layer tunnelled into the SiGe layer, whereas carrier confinement occurred in the conventional SOI n-MOSFET. In addition, we confirmed that in the Si thickness range of from 10 nm to 3 nm the Phonon-limited electron mobility in an SGOI n-MOSFET was governed by the inter-valley Phonon scattering rate. This result indicates that a fully depleted C-MOSFET with a channel length of less than 15 m should be fabricated on an strained Si SGOI structure in order to obtain a higher drain current.
Keywords
SGOI; phonon-limited mobility; strained Si; mobility; simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, IEEE Trans. Computer Aided Design CD 7, 1164 (1988)   DOI
2 S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices ED 41, 2357 (1994)   DOI   ScienceOn
3 K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase, Jpn. J. Appl. Phys. 28, 1856 (1989)   DOI
4 D. K. Ferry, Semiconductors (Macmillan, New York, 1991)
5 M. N. Darwish, J.L. Lentz, M. R. Pinto, P. M. Zeitzoff, T. J. Krutsick, and H. H. Vuong, IEEE Trans. Electron Devices ED 44, 1529 (1997)   DOI   ScienceOn
6 R. H. Yom et al., IEEE Transaction on Electron Device, Vol. 39, 1992 p. 1704 (1992)   DOI
7 P. J. Price, Ann. Phys. (NY) 133, 217 (1981)   DOI   ScienceOn
8 G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, Phys, Rev. Lett. 54, 2441 (1985)   DOI   ScienceOn
9 T. Vogelsang and K. R. Hofmann, Appl. Phys. Lett. 63, 186 (1993)   DOI   ScienceOn
10 M. Ishizuka, T Iizuka, S. Ohi, M. Fukuma, and H. Mikoshiba, IEDM90 Technical Digest, p. 763 (1990)
11 R. People, IEEE J. Quantum Electron QE 22, 1696 (1986)   DOI
12 M. V. Fischetti and S. E. Laux, Phys. Rev. B 48, 2244 (1993)   DOI   ScienceOn
13 F. Gamiz, P. Cartujo Cassinello, J. B. Roladan, and F. Jimenez Molinos, J. Appl. Phys. 92, 288 (2002)   DOI   ScienceOn
14 H. Ezawa, S. Kawaji, and K. Nakamura, Jpn. J. Appl. Phys. 13, 126 (1974)   DOI
15 C. Jungemarn, A. Emunds, and W. L. Engl, Solid State Electron. 32, 1529 (1993)   DOI   ScienceOn
16 F. Stern, Phys. Rev. 73, 8364 (1972)
17 K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase, Jpn. J. Appl. Phys. 28, 1856 (1989)   DOI
18 S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices ED 41, 2363 (1994)   DOI   ScienceOn
19 S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, J. Appl. Phys. 80, 1567 (1996)   DOI   ScienceOn
20 G. S. Lee, T. H. Shim, and J. G. Park, Journal of Ceramic Processing Research. Vol. 5, No. 3, pp. 247 250 (2004)
21 J. G. Park, T. H. Shim, T. H Lee, Y. K. Park, H. K. Moon, S. L. Maeng, W. J. Cho, and S. D. Yoo, Proc. Int. Symp. IEEE Int. SOI Conference, p. 61 (2003)
22 J. J. Welser, J. L. Hoyt, and J. F. Gibbons, IEEE Electron Device Lett., Vol. 15, p. 100(1994)   DOI   ScienceOn