• Title/Summary/Keyword: 터널발파

Search Result 475, Processing Time 0.023 seconds

Hydro-mechanical Behavior of a Circular Opening Excavated in Saturated Rockmass (포화된 암반에 굴착된 원형공동의 수리-역학적 거동)

  • Lee Youn-Kyou;Shin Hee-Soon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.23-35
    • /
    • 2005
  • Excavation of an opening in a saturated porous rock may lead to the development of pore pressure around the opening due to the redistribution of initial rock stresses. The built-up of pore pressure, in turn, may affect the mechanical behavior of rock mass and give the different pattern of stress distribution around the opening from that of the case where the coupling is neglected. In this study, the short time response of an opening excavated in saturated ground under anisotropic initial stress conditions was investigated numerically. Not on the wall of opening but at a short distance from the wall, the tangential stresses were peak during the short period after excavation when the hydro-mechanical coupling is considered.

Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method (Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석)

  • Kim, Jong-In;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • The purpose of this study is to evaluate an effect of ground vibration caused by blasting on the concrete brick structure. For the purpose, dynamic response time-history of the structure assumed single degree of freedom (SDOF) system and vibration time-history directly measured from the structure were examined, using Newmark $\beta$ method based on data measured at ground. The time-history was interpreted from the measured data of ground and structure in single hole blasting. Vibration magnitude between ground vibration and structure in single hole blasting and 20 ms interval blasting was about three times and was shown larger vibration on the structure. By time-history analysis of structure dynamic response, the value was almost the same one with the data measured from the structure. It indicates that the vibration characteristics of structures may be predicted on the basis of the ground vibration data measured from the sub-ground of structure.

A Study on the Decay Effect of Ground Vibration based on the Number of PLHBM Holes in Gneiss Area (편마암지역에서 선대구경 수평보링 공수적용에 따른 지반진동 감쇠효과 연구)

  • Choi, Hyung-Bin;Han, Dong-Hun;Ki, Kyung-Chul
    • Explosives and Blasting
    • /
    • v.34 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, the field tests were performed on V-cut, PLHBM 1 hole, PLHBM 2 hole in gneiss area in order to compare the effects of the vibration decay of a tunnel cut-hole according to the number of PLHBM holes with scaled distance. Based on the prediction equation of blasting vibration from the result of the tests, the decay rate of vibration were confirmed 21.8~61.1% using PLHBM 1 hole, 35.7~79.3% using PLHBM 2 hole for scaled distance within $10{\sim}100m/kg^{1/2}$ on the basis of V-cut PPV. As the scaled distance was increased, the effect of vibration decay was decreased. The effect of vibration decay of cut-hole for intial PLHBM 1~2 hole was significantly high.

Experiment and Evaluation of Mist Diffusion from Water Tube for Blasting Dust Control in accordance with the Explosives Position (폭약 기폭위치에 따른 발파 분진제어용 워터튜브 주입수의 분무확산 실험 및 평가)

  • Yang, Hyung-Sik;Ko, Young-Hun;Kim, Jung-Gyu;Noh, You-Song;Park, Hoon;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • A water tube with detonating cord was devised to control the blast dust. Water diffusion experiments with different detonating cord positions were conducted during the series of experiments to optimize the design parameters of the tube. Images from high speed camera were analyzed to evaluate the results. AUTODYN program was adopted to simulate the diffusion process of water and compared with the images. Diffusion of water shows cross flow in case of external charge while the internal case shows radial flow. A bubble ring was formed during the numerical analysis of internal charge case as occurred in underwater blast. An additional bubble ring was formed by the reflection pressure from the ground. And the Weber number was determined as sufficient for spray atomization performance of the water tube.

A Study on the Crack-propagation Mechanism of Pre-splitting Method with Consideration of Stress Field (응력장을 고려한 프리스플리팅 공법의 균열발생 원리에 대한 연구)

  • Yoon, Ji-Sun;Woo, Taek-Gyu;Kim, Min-Woo;Jang, Young-Min
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.1-11
    • /
    • 2009
  • Abstract By investigating the stress redistribution caused by the preceding cut blasting when applying the pre-splitting method to tunnel round, an attempt was made to find conditions that were favorable for the propagation of cracks in contour holes. The investigation of the direction of minor principal stress in the numerical analysis revealed that the most significant factor affecting the change of the direction was the loading condition, while the core shape, rock type, and tunnel depth seemed to be less important in determining the direction of minor principal stress. Moreover, the number of cracks tended to increase with the increase of deviatoric stress. Through the model test of pre-splitting, it is confirmed that the pre-splitting method taking the stress field into account can reduce the extent of yield zone and has advantage in controlling the direction of crack than the conventional one.

3D analysis of fracture zones ahead of tunnel face using seismic reflection (반사 탄성파를 이용한 터널막장 전방 파쇄대의 3차원적 예측)

  • Lee, In-Mo;Choi, Sang-Soon;Kim, Si-Tak;Kim, Chang-Ki;Jun, Jea-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.301-317
    • /
    • 2002
  • Recently, a geophysical exploration technology is frequently utilized in the civil engineering field as well as in the resource exploration. It might be important for civil engineers to understand the fundamental theory of seismic survey and limitation of the technique when utilizing these techniques in the civil engineering field. A 3-dimensional migration technique based on the principle of ellipsoid to predict the fractured zone ahead of tunnel face utilizing the tunnel seismic survey was proposed so that the geometry of the fractured zone can be estimated, i.e. the angle between tunnel axis and discontinuity zone, and the dip. Moreover, a numerical analysis technique to simulate the TSP (Tunnel Seismic Prediction) test was proposed in this paper. Based on parametric studies, the best element size, the analysis time step, and the dynamic characteristics of pressure source were suggested to guarantee the stability and accuracy of numerical solution. Example problems on a hypothetical site showed the possibility that the 3-dimensional migration technique proposed in this paper appropriately estimate the 3D-geometry of fractures ahead of tunnel face.

  • PDF

The Improvement of Tunnel Construction Cost Standards Considering the Site Conditions in Korea (현장실태를 고려한 국내 터널공사 공사비산정기준 개선)

  • Ahn, Bang-Ryul;Lee, Han-Soo;Oh, Jae-Hoon;Song, Tae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.26-35
    • /
    • 2020
  • Tunnel construction is an important part of Korean public construction projects. Although the development of various equipment and technologies has led to advances in tunnel construction methods that are implemented on sites, the cost standards related to such works do not yet reflect the realities of the construction sites. A literature review and site surveys were conducted to suggest reasonable cost standards for tunnel work that reflects the realities of the field. First, each item in the cost standards for tunnel work, as established in the Construction Standard Production Rates, were analyzed. The results were compared with the actual costs implemented on tunnel projects. The key items analyzed included those regarding the work cycle time, such as rock classification, profiling survey, drilling speed, and muck-disposal processing equipment combination, as well as the number of people put to tunneling work. Based on the site survey results, improved estimates regarding the cycle time per one tunnel drilling blast, drilling speed of the machine, muck disposal processing equipment combination, and the number of people put to tunneling work were suggested. This study suggests the cost standards that reflect the realities of tunneling sites. The results are expected to help ensure adequate costs for tunnel construction projects.

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

Comparison of Carbon Emissions between the TBM Method and the NATM Method through LCA Analysis (LCA 분석을 통한 TBM 공법과 NATM 공법의 탄소배출량 비교 연구)

  • Tae-Su Jang;Jae-Soon Khau;Jin-Hyuk Song;Nam-Sun Hwang
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • To compare the global warming impact of the TBM and NATM method, which are representative tunnel excavation methods, a life cycle assessment was performed for each method. Life cycle assessment should compare the sum of carbon emissions by considering the pre-manufacturing stage, product manufacturing stage, usage stage, and disposal stage. However, access to TBM (Tunnel Boring Machine) manufacturing and disposal data is limited, so I had no choice but to focus on the analysis for the usage stage. In general, carbon emissions during the pre-product manufacturing stage and product manufacturing stage often exceed 90% of carbon emissions throughout the entire process. Therefore, since it is difficult to achieve the analysis goal only by comparing the usage stage, the analysis scope was expanded, and carbon emissions for the process were calculated for the NATM method with access to manufacturing data. As a result of comparing the relative impact on global warming, the carbon emissions of the TBM method were found to be higher than those of the NATM method even though TBM method was only considered for the usage stage. So there it is, the NATM method can be seen as environmentally friendly in the future when considering the impact of climate change (global warming), which has recently attracted attention among environmental impact fields.

A Study on Effective Blasting Patterns on Small Area Tunnel (소단면 터널에서 효율적인 발파 패턴에 관한 연구)

  • Lim, Han-Uk;Kwon, O-Sung
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.17-28
    • /
    • 2006
  • In underground drilling and blasting, particularly in small headings(generally under $20m^2$), the prospects for changes of blast parameters are usually more limited than those employed by large area tunnel(over $20m^2$). It is also well known that the consumption of explosives and specific drilling rate for small tunnel areas are exponentially increased also tunnel areas decrease. To confirm above results, some tests for two tunnels(irrigation water tunnel with $6.0m^2$ area, electric supplies tunnel with $15.0m^2$) are also carried out in this study. As a results, specific drilling rate and specific charge for irrigation water tunnel were decreased from 13.8 to $7.7m/m^3$ and from 4.88 to $2.56kg/m^3$ respectively. Those for electric supplies tunnel were also decreased from 8.0 to $4.9m/m^3$ and from 3.46 to $2.22kg/m^3$.

  • PDF