• Title/Summary/Keyword: 탐지정확도

Search Result 899, Processing Time 0.032 seconds

Semi-supervised learning based malware detection technique (준지도 학습 기반의 멀웨어 탐지 기법)

  • Yu-Ran Jeon;Hye Yeon Shim;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.254-257
    • /
    • 2024
  • 5G 통신과 인공지능 기술이 발전하고, 사물인터넷 기기의 수가 증가함에 따라 종래의 정보보호체계를 우회하는 지능적인 사이버 공격이 증가하고 있다. 그러나, 종래의 기계학습 기반 멀웨어 탐지 방식은 이미 알려진 멀웨어만 탐지할 수 있으며, 새로운 멀웨어는 탐지가 어렵거나, 기존의 알려진 멀웨어로 잘못 분류되는 문제가 있다. 본 연구에서는 비지도학습을 사용하여 알려지지 않은 멀웨어를 탐지하고, 새롭게 탐지된 멀웨어를 새로운 라벨로 분류하여 재학습하는 준지도 학습 기반의 멀웨어 탐지 기법을 제안한다. 다양한 데이터 환경에서 알려지지 않은 멀웨어 데이터가 탐지 모델로 입력될 때 제안한 방식의 성능을 평가했다. 실험 결과에 따르면 제안한 준지도 학습 기반의 멀웨어 탐지 방법은 종래의 방식 대비 정확도를 약 16% 개선했다.

Comparative Experiment of Cloud Classification and Detection of Aerial Image by Deep Learning (딥러닝에 의한 항공사진 구름 분류 및 탐지 비교 실험)

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, So young;Shin, Sang ho;Park, Jin Sue;Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.409-418
    • /
    • 2021
  • As the amount of construction for aerial photography increases, the need for automation of quality inspection is emerging. In this study, an experiment was performed to classify or detect clouds in aerial photos using deep learning techniques. Also, classification and detection were performed by including satellite images in the learning data. As algorithms used in the experiment, GoogLeNet, VGG16, Faster R-CNN and YOLOv3 were applied and the results were compared. In addition, considering the practical limitations of securing erroneous images including clouds in aerial images, we also analyzed whether additional learning of satellite images affects classification and detection accuracy in comparison a training dataset that only contains aerial images. As results, the GoogLeNet and YOLOv3 algorithms showed relatively superior accuracy in cloud classification and detection of aerial images, respectively. GoogLeNet showed producer's accuracy of 83.8% for cloud and YOLOv3 showed producer's accuracy of 84.0% for cloud. And, the addition of satellite image learning data showed that it can be applied as an alternative when there is a lack of aerial image data.

Study on MMTI Signal Processing Algorithm and Analysis of the Performance for Periscope Detection in Airborne Radar (항공용 레이다를 이용한 잠망경 탐지 MMTI 신호처리 기법 연구 및 성능 분석)

  • Jung, Jae-Hoon;Lee, Jae-Min;Youn, Jae-Hyuk;Shin, Hee-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.661-669
    • /
    • 2017
  • This paper describes an MMTI(Maritime Moving Target Indicator) for periscope detection in airborne radar. Firstly, we analyze the characteristics of sea clutter, sea targets. Secondly, we study the differences between GMTI(Ground Moving Target Indicator) and MMTI. This paper proposes an optimal MMTI operating environment and method. We also suggest a signal processing algorithm using STAP(Space-Time Adaptive Processing) for detecting small RCS target moving low speed. The detection probability for moving target with MDV(Minimum Detectable Velocity) is simulated under various RCS and multi-channel system. Finally, we analyze the major performance for range, velocity and azimuth accuracy.

Comparative Study of Anomaly Detection Accuracy of Intrusion Detection Systems Based on Various Data Preprocessing Techniques (다양한 데이터 전처리 기법 기반 침입탐지 시스템의 이상탐지 정확도 비교 연구)

  • Park, Kyungseon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.449-456
    • /
    • 2021
  • An intrusion detection system is a technology that detects abnormal behaviors that violate security, and detects abnormal operations and prevents system attacks. Existing intrusion detection systems have been designed using statistical analysis or anomaly detection techniques for traffic patterns, but modern systems generate a variety of traffic different from existing systems due to rapidly growing technologies, so the existing methods have limitations. In order to overcome this limitation, study on intrusion detection methods applying various machine learning techniques is being actively conducted. In this study, a comparative study was conducted on data preprocessing techniques that can improve the accuracy of anomaly detection using NGIDS-DS (Next Generation IDS Database) generated by simulation equipment for traffic in various network environments. Padding and sliding window were used as data preprocessing, and an oversampling technique with Adversarial Auto-Encoder (AAE) was applied to solve the problem of imbalance between the normal data rate and the abnormal data rate. In addition, the performance improvement of detection accuracy was confirmed by using Skip-gram among the Word2Vec techniques that can extract feature vectors of preprocessed sequence data. PCA-SVM and GRU were used as models for comparative experiments, and the experimental results showed better performance when sliding window, skip-gram, AAE, and GRU were applied.

Internal Information Leakage Detection System using Time Series Graph (시계열 그래프를 이용한 내부 데이터 유출 탐지 시스템)

  • Seo, Min Ji;Shin, Hee Jin;Kim, Myung Ho;Park, Jin Ho
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.769-770
    • /
    • 2017
  • 최근 데이터 기술의 발달에 따라, 기업에서는 중요 데이터를 서버와 같은 데이터 저장 장치에 보관하고 있다. 하지만 기업 내부 직원에 의해 기업의 기밀 데이터가 유출될 수 있는 위험성이 있기 때문에, 내부 직원에 의한 데이터 유출을 탐지 및 방지해야 할 필요성이 있다. 따라서 본 논문에서는 각 보안 솔루션에서 수집한 보안 로그를 데이터 유출 시나리오를 바탕으로 시계열 그래프로 작성하여, 이미지 인식에 뛰어난 성능을 보이는 합성곱 신경망을 통해 데이터 유출을 탐지하는 시스템을 제안한다. 실험 결과 유출된 데이터의 크기에 상관없이 95% 이상의 정확도를 보였으며, 복합적인 행동을 통해 데이터 유출을 시도한 경우에도 97% 이상의 정확도를 보였다.

A Study on comparison of KDD CUP 99 and NSL-KDD using artificial neural network (인공신경망을 통한 KDD CUP 99와 NSL-KDD 데이터 셋 비교)

  • Ji, Hyunjung;Kim, Yonghyun;Kim, Donghwa;Shin, Dongkyoo;Shin, Dongil
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.211-213
    • /
    • 2017
  • 최근 컴퓨터 네트워크를 활용하는 다양한 기기들이 개발되고 급격히 확산되면서, 컴퓨터 네크워크는 전보다 많은 보안문제에 직면하게 되었다. 이에 따라 네트워크 보안을 위한 침입탐지시스템의 필요성이 대두된다. 침입탐지시스템을 구현하기 위한 대표적인 데이터 셋으로는 KDD CUP 99(KDD'99)와 이후 KDD'99의 문제점을 보완하여 공개된 NSL-KDD가 있다. 본 논문에서는 KDD'99와 NSL-KDD를 소개하고 인공신경망을 통해 두 데이터 셋을 비교 분석하였다. Multi-Layer Perceptron을 사용해 데이터 셋을 분석해본 결과, KDD'99는 전체 정확도에서 더 높은 결과를 얻은 반면 공격 별 탐지 정확도 면에서는 NSL-KDD에 뒤쳐졌다.

A Study on Improving Accuracy of Intrusion Detection for Network IDS by Using System Information (시스템 정보를 이용한 NIDS의 공격 탐지 정확도 향상에 관한 연구)

  • 이건희;유정각;김동규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.389-391
    • /
    • 2003
  • 최근 인터넷 사용이 증가하고, 인터넷에 대한 접속이 손쉬워 지고, 인터넷 상에서 손쉽게 해킹 도구를 획득할 수 있게 됨에 따라서 네트워크 침해 사고가 급증하고 있다. 이런 상황에서 IDS(Intrusion Detection System)은 이러한 문제론 해결하기 위한 하나의 대안으로 제시되고, 실제 사용되고 있다. 그런데 침입 탐지시스템이 보고하는 공격은 실제 시스템이나 네트워크에 있어서 공격으로 처리되지 않아도 될 보고들이 존재하게 된다. 이를 줄여서 실제 관리자들이 더욱 정확한 침입에 대한 경고를 접하여 신속하게 대응할 수 있도록 할 수 있다. 이를 위해서 본 논문에서는 지역 망 내에 존재하는 대상 시스템들의 정보를 이용하도록 한다. 이를 이용하는 방법으로 호스트 취약점 분석 모듈을 이용하는 방법과 에이전트를 각 호스트에 설치하여 호스트의 정보를 수집하고, 이를 미리 정의된 패턴과 함께 침입 탐지 시스템의 공격 판단에 사용하는 방법을 제시한다. 이를 통해서 침입 판단의 정확도를 높이고 관리자의 업무 효율을 높이도록 한다.

  • PDF

Abusive Sentence Detection using Deep Learning in Online Game (딥러닝를 사용한 온라인 게임에서의 욕설 탐지)

  • Park, Sunghee;Kim, Huy Kang;Woo, Jiyoung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.13-14
    • /
    • 2019
  • 욕설은 게임 내 가장 큰 불쾌 요소 중 하나이다. 지금까지 게임 사용자들의 욕설을 방지하기 위해서 금칙어를 기반으로 필터링 해왔으나, 한국어 특성상 단어를 변형하거나 중간에 숫자를 넣는 등 우회할 방법이 다양하기 때문에 효과적이지 않다. 따라서 본 논문에서는 실제 온라인 게임 'Archeage'에서 수집된 채팅 데이터를 기반으로 딥러닝 기법 중 하나인 콘볼루션 신경망을 사용하여 욕설을 탐지하는 모델을 구축하였다. 한글의 자음, 모음을 분리하여 실험하였을 때, 87%라는 정확도를 얻었다. 한 글자씩 분리한 경우, 조금 더 좋은 정확도를 얻었으나, 사전의 수가 자소를 분리한 경우보다 10배 이상 늘어난 것을 고려해보면 자소를 분리한 것이 더 효율적이다.

  • PDF

Model Ensemble for Accurate Pig Detection under Strong Illumination Condition (강한 조명하에서 정확한 돼지 탐지를 위한 모델 앙상블)

  • Son, Seungwook;Ahn, Hanse;Lee, Nayeon;An, Yunho;Chung, Yongwha;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.385-388
    • /
    • 2021
  • CNN 기반 객체 탐지기의 발전으로 돈사에서 돼지 모니터링이 가능하지만, 실제 농가에서 적용하기 위해서는 영상에서 돈사의 조명에 직접 노출된 돼지들이 노출 과다 현상에 의해 탐지되지 않는 문제가 여전히 남아있다. 이러한 문제점은 싱글 모델로서는 정확도 개선의 한계가 있어, 복수개의 모델을 이용한 모델 앙상블 기법을 제안한다. 특히 본 연구에서 제안하는 영상 처리 기법을 사용하여 생성된 상호 보안적인 데이터를 통해 학습된 두 개의 TinyYOLOv4 모델을 결합하면, 돼지 객체 탐지의 정확도가 하나의 TinyYOLOv4 모델에 비하여 획기적으로 개선되었음을 확인하였다.

A Method for Real-Time Face Detection through Optical Flow and Scale Resampling (광학 흐름과 스케일 리샘플링을 통한 실시간 얼굴 탐지 기법)

  • Sang-Jeong Kim;Dong-Gun Lee;Yeong-Seok Seo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.862-863
    • /
    • 2024
  • 기존의 딥러닝 모델을 활용한 얼굴 탐지 시스템은 영상을 처리할 때 이미지의 양이 과도하여 추론 속도가 영상 재생 속도보다 느려지게 되고, 이로 인해 지연 현상이 발생한다. 본 논문은 이미지 크기 조정 및 광학 흐름을 활용하여 얼굴 탐지에 필요한 추론량을 줄이는 기법을 제안한다. 제안된 기법은 세 단계의 처리 과정으로 구성된다. 첫 번째 단계에서는 프레임의 크기를 줄여 프레임 처리 속도를 효과적으로 향상시킨다. 두 번째 단계에서는 비탐지 구간이 아닌 프레임만을 배치 처리하여 딥러닝 모델로 추론하여 처리 시간을 단축시킨다. 세 번째 단계에서는 광학 흐름 알고리즘을 이용하여 비탐지 구간에서 얼굴 추적을 함으로써 정확도는 유지하면서 탐지 시간을 단축한다. 본 논문에서 제안하는 이미지 크기 조정 및 광학 흐름 알고리즘 기반 얼굴 탐지 시스템은 처리 시간을 수십 배 이상 단축하여 영상에서의 얼굴 탐지에 있어서 우수한 성능을 입증하였다.