Acknowledgement
본 연구는 2021년 국토지리정보원 "항공영상 품질검사 자동화체계 연구"사업의 지원을 받아 수행된 연구임.
References
- Cho, W., Lee, S.H., Choi, S.S., Hwang, H.D., and Lee, H.J. (2003), Quality Improvement on Aerial Photographs, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 21, No. 3, pp. 277-287. (in Korean with English abstract)
- Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014), Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 24-27 June, Columbus, Ohio, pp. 580-587.
- He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017), Mask R-CNN, IEEE International Conference on Computer Vision (ICCV), 22-29 October, Venice, Italy, pp. 2961-2969.
- He, K., Zhang, X., Ren, S., and Sun, J. (2015), Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, IEEE International Conference on Computer Vision (ICCV), 13-16 December, Santiago, Chile, pp. 1026-1034.
- Kim, B.H., Kim, Y.H., Han, Y.K., Choi, W.S., and Kim, Y.I. (2014), Fully Automated Generation of Cloud-free Imagery Using Landsat-8, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 2, pp. 133-142. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2014.32.2.133
- Kim, B., Kim, G., Jin, S., and Cho, S. (2019), A Comparative Study on Performance of Deep Learning Models for Vision-based Concrete Crack Detection according to Model Types, Journal of the Korean Society of Safety, Vol. 34, No. 6, pp. 50-57. (in Korean with English abstract) https://doi.org/10.14346/JKOSOS.2019.34.6.50
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012), ImageNet classification with deep convolutional neural networks, In Proceedings of NIPS, pp. 1106-1114.
- Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998), Gradient-based learning applied to document recognition, IEEE, vol. 86, no. 11, pp. 2278-2324. https://doi.org/10.1109/5.726791
- Lee, M.H., Cheon, E.J., and Eo, Y.D. (2019), Cloud Detection and Restoration of Landsat-8 using STARFM, Korean Journal of Remote Sensing, Vol. 35, No. 5-2, pp. 861-871. (in Korean with English abstract)
- Lee, J.O., and Sung, S.M. (2019), Quality Evaluation of UAV Images Using Resolution Target, Journal of the Korean Association of Geographic Information Studies, Vol. 22, No. 1, pp. 103-113. (in Korean with English abstract) https://doi.org/10.11108/KAGIS.2019.22.1.103
- Lin, T.Y., Goyal, P., Girshick, R., He, K., and Dollar, P. 2017, Focal Loss for Dense Object Detection, IEEE International Conference on Computer Vision (ICCV), 2017, 22-29 October, Venice, Italy, pp. 2980-2988.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., and Berg, A. C. 2016, SSD: Single Shot MultiBox Detector, In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.), Computer Vision - ECCV 2016, Springer, Cham. pp. 21-37.
- Liu, Z., Du, J., Tian, F., and Wen, J. (2019), MR-CNN: A Multi-Scale Region-Based Convolutional Neural Network for Small Traffic Sign Recognition, IEEE Access, vol. 7, pp. 57120-57128. https://doi.org/10.1109/access.2019.2913882
- Mittal, A., Moorthy, A.K., and Bovik, A.C. (2012), No-Reference Image Quality Assessment in the Spatial Domain, IEEE TRANSACTIONS ON IMAGE PROCESSING, Vol. 21, No. 12, pp. 4695-4708. https://doi.org/10.1109/TIP.2012.2214050
- Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016), You Only Look Once: Unified, Real-Time Object Detection, 29th IEEE Conference on Computer Vision and Pattern Recognition, 27-30 June, Las Vegas, Nevada, USA, pp. 779-788.
- Redmon, J., and Farhadi, A. (2018), YOLOv3: An Incremental Improvement, arXiv, https://arxiv.org/abs/1804.02767 (last date accessed: 17 December 2021).
- Ren, S., He, K., Girshick, R., and Sun, J. (2015), Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Seong, S.K., Choi, S.K., and Choi, J.W., Cloud Detection of PlanetScope Imagery Based on Deeplab-V3+ by Using Transfer Learning, Journal of Korean Society for Geospatial Information Science, Vol. 28, No. 4, pp. 25-32. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2020.28.4.025
- Simonyan, K. and Zisserman, A. (2015), Very Deep Convolutional Networks For Large-Scale Image Recognition, Computer Vision and Pattern Recognition, Cornell University, Ithaca, NY, USA.
- National Geographic Information Institute (2015), Data Quality for Aerial Photograph, NGII-STD.2015-7/2020, National Geographic Information Institute, Suwon, Korea.
- Song, H.J., Lee, E.B., Jo, H.J., Park, S.Y., Kim, S.Y., Kim, H.J., and Hong, J.W. (2020), Evaluation of Classification and Accuracy in Chest X-ray Images using Deep Learning with Convolution Neural Network, Journal of the Korean Society of Radiology, Vol. 14, No. 1, pp. 39-44. (in Korean with English abstract) https://doi.org/10.7742/JKSR.2019.14.1.39
- Sun, L., Mi, X., Wei, J., Wang, J., Tian, X., Yu, H., and Gan, P. (2017), A cloud detection algorithm generating method for remote sensing data at visible to short-wave infrared wavelengths, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 124, pp. 70-88. https://doi.org/10.1016/j.isprsjprs.2016.12.005
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015), Going Deeper with Convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition, 7-12 June, Boston, MA, USA, pp. 1-9.
- Zhang, H., Li, B., Zhang, J., and Xu, F. (2014), Aerial Image Series Quality Assessment, 35th International Symposium on Remote Sensing of Environment-2013, 22-26 April, Beijing, China, Vol. 17, pp. 012183.
- Zhang, G.F., Wang, L., Zheng, Z.N., Chen, Y.F., Zhou, Z.B., and Zhao K. (2016), No-reference aerial image quality assessment based on natural scene statistics and color correlation blur metric, 13th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance, 21 August, Columbus, OH, USA, pp. 1-4.
- Zeiler, M.D., and Fergus, R. (2014), Visualizing and understanding convolutional networks, In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), ECCV 2014, Springer, Cham, vol. 8689, pp. 818-833.