• Title/Summary/Keyword: 탐구문제

Search Result 947, Processing Time 0.023 seconds

The Comparative Analysis of Science Process Skills and Teaching Methods in the 6th and the 7th Elementary School Science Curricula (제 6차와 7차 초등학교 과학과 교과서에 제시된 탐구기능과 교수-학습 방법의 비교 분석)

  • Choi, Sun-Young;Kang, Ho-Kam
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.706-716
    • /
    • 2002
  • The purpose of this study was to compare and analyze the science process skills and teaching methods between the 6th and the 7th elementary school science textbooks. For this study, science textbooks and teacher's guidebooks from the 3rd to the 6th grade were analyzed. In this research the science process skills are divided by basic process skills(BPS) and integrated process skills(IPS). The BPS is composed of observing, classifying, measuring, predicting and inferring skill, which are 5 subcategories. The IPS is composed of problem cognition, formulating hypothesis, controlling variables, transforming data, interpreting data, drawing result, and generalization, which are 7 subcategories. The results found in the analysis of science process skills in the 6th and 7th science textbooks are as follows: 1. The percentage of the BPS was increased, but the IPS was decreased in the 7th than the 6th. 2. The percentage of the IPS was higher than the BPS in the 6th science textbooks, but the BPS was higher than IPS in lower grade and the IPS was higher than the BPS in higher grade in the 7th textbooks. 3. Observing and problem cognition skill were most dominant in the 6th and 7th science textbooks. 4. The percentages of observing(24.8%), classifying(5.4%), measuring(5.6%), inferring(6.0%) in the BPS and interpreting data(4.4%) in the IPS were increased, but predicting(3.8%), formulating hypothesis(0.5%), controlling variables( 1.8%), transforming data( 1.2%), drawing result(0.8%) and generalization(0.9%) skills were decreased in the 7th. And teaching methods suggested in the curriculum are as follows: the percentages of learning by observation(19.2%) and role play(0.1 %) were decreased, but learning by experiment(6.2%), learning by discussion(2.0%), learning by investigation(4.6%) and creative learning(6,4%) were increased in the 7th than the 6th. In conclusion, it was found that the basic process skills were emphasized in the 7th science textbooks than the 6th and the science process skills in the science textbooks of the 7th curriculum were distributed by the grade level of the elementary children.

A Case Study on the Practice of 'Science Inquiry Experiment' in the 2015 Revised National Curriculum: An Understanding in the Perspective of Cultural-Historical Activity Theory(CHAT) (2015 개정 교육과정의 '과학탐구실험' 실행에 대한 사례연구 -문화역사적 활동이론(CHAT) 측면에서의 이해-)

  • Shin, Soyeon;Park, Chulkyu;Lee, Chang Youn;Hong, Hun-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.885-899
    • /
    • 2018
  • As 'Science Inquiry Experiment' is newly introduced in the high school curriculum, where inquiry and experiment oriented education is insufficient, this study aims to analyze teacher's practice of 'Science Inquiry Experiment' in depth and identify contradictions during its process in the perspective of Cultural Historical Activity Theory. The research participant is teacher SHIN who is exclusively responsible for Science Inquiry Experiment. Starting with reflection on the practice of Science Inquiry Experiment class conducted in the first semester, interviews with participants, participatory observation and local materials were used during the 2nd semester's Science Inquiry Experiment class. A descriptive analysis of the teacher SHIN's practice of Science Inquiry Experiment was carried out and the contradictions in the activity system of the teacher SHIN were identified. The result reveals that in the overall practice of teaching Integrated Science and Science Inquiry Experiment, there were contradictions between teacher SHIN's recognition about cooperation(subject) and shared responsibility with other teachers(division of labor), and between teacher SHIN's recognition about the subjects(subject) and contrasting contents in teacher training courses(community). In the practice of teaching Science Inquiry Experiment, there were specific contradictions between teacher SHIN's recognition about the subject(subject) and time of job assignment(rule), between experimental activities(object) and experimental tools(tool), and between purpose of the subject(object) and directions about assessment(rule). These contradictions directly or indirectly influence the practice of teaching Science Inquiry Experiment. There needs to be support for constructing an activity system capable of supporting and promoting teachers' practice of Science Inquiry Experiment, and we made several suggestions to resolve the problems.

A Study on Solving Triangle Construction Problems Given by a Midpoint of Side and Other Two Points (한 변의 중점과 다른 두 점이 주어진 삼각형 작도문제의 해결에 대한 연구)

  • Han, In-Ki;Lee, Jeong-Soon
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.4
    • /
    • pp.365-388
    • /
    • 2009
  • In this paper we solve various triangle construction problems given by three points(a midpoint of side and other two points). We investigate relation between these construction problems, draw out a base problem, and make hierarchy of solved construction problems. In detail we describe analysis for searching solving method, and construction procedure of required triangle.

  • PDF

Development of a Test of Science Inquiry Skills for Elementary School Fifth and Sixth Graders (초등학교 고학년 학생의 과학 탐구능력 측정을 위한 평가 도구 개발)

  • Song, Kyoung-Hye;Lee, Hang-Ro;Lim, Cheong-Hwan
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.6
    • /
    • pp.1245-1255
    • /
    • 2004
  • The purpose of this study is to develop a valid and reliable evaluating instrument for elementary school fifth and sixth graders. The instrument is developed through R&D procedure, which includes two checks of science specialist and two field trials of the instrument. Evaluating items are content-free for each science inquiry skill. Each science inquiry element is based on SAPA and the 7th curriculum. This study has selected 10 science inquiry skills(observing, classifying, measuring, predicting, inferring, recognizing of a problem, controlling variables, interpreting data, drawing a conclusion, designing an experiment), formulated a clear definition of the elements of science inquiry skills, and established the objectives of evaluation. The content areas are divided into three categories, material and energy, life and environment, and the earth and circulation. Each category contains 10 items. So the instrument consists of 30 items. The content validity of items, objectivity of the scoring keys, and clarity of the items has been checked twice by specialists in science education. At the same time, two field trials were performed to produce the reliability of the instruments, discrimination index, and item difficulty index. The instrument has the content validity is 91.6%, reliability 0.79, objectivity 93.3%, discrimination index 0.30, and item difficulty index 66.1%.

Design of Problem-Based Blended Learning for the Improvement of Software Adaptability (응용소프트웨어 적응력 향상을 위한 문제중심의 B-러닝 설계)

  • Kim, Sun-Nam;Yoo, In-Hwan
    • 한국정보교육학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.129-134
    • /
    • 2007
  • 학교 현장에서의 컴퓨터 교육은 여전히 시범실습위주로 이루어지고 있으며. 초등학교 컴퓨터 교육에서 많은 비중을 차지하는 소프트웨어 교육은 더욱 그러하다. 소프트웨어는 끊임없이 개발되거나 업그레이드 되고 있어 가르쳐야 할 내용이 많아져 새로운 학습방법이 필요하다. 즉 문제사태에서 필요한 기능을 찾아 스스로 문제를 해결하고 다른 응용소프트웨어에 전이 및 파지할 수 있는 능력을 길러주는 학습방법이 필요하다. 그 방법 중의 하나가 구성주의 학습 원리에 부합한 문제중심학습이며 학습의 효과를 높이기 위해서 온라인과 오프라인학습의 장점을 혼합한 B-러닝 방법이 필요하다. 따라서 본 연구는 응용소프트웨어의 적응력을 향상시키기 위해 한글 워드프로세서 학습내용을 학습자의 수준에 맞게 문제중심으로 재구성하고 온라인 학습을 위해 학급커뮤니티를 설계 및 구현하였다. 그리고 문제중심의 B-러닝에 적합한 학습모형을 설계하여 제시하였다. 문제중심의 B-러닝은 구성주의 학습 원리에 적합한 실생활의 문제를 학습내용으로 하고 면대면 교실수업의 장점과 온라인 학습의 장점을 혼합하여 자기주도적으로 탐구학습을 하는 것이므로 응용소프트웨어의 적응력은 향상될 것으로 기대한다.

  • PDF

작도 문제의 해결 방법

  • Han, In-Gi
    • Communications of Mathematical Education
    • /
    • v.9
    • /
    • pp.153-164
    • /
    • 1999
  • 작도 문제는 역사적으로 아주 오래된 문제 중의 하나일 뿐만 아니라, 현재 우리 나라 기하 교육에 있어 매우 중요한 역할을 하고 있다. 즉, 평면 기하의 중심 정리들 중의 하나인 삼각형의 합동 조건들을 도입하기 위한 기초로 주어진 조건들(세 선분, 두 선분과 이들 사이의 끼인각, 한 선분과 그 양 끝에 놓인 두 각)에 상응하는 삼각형의 작도가 행해진다. 그러나, 현행 수학 교과서나 수학 교수법을 살펴보면, 작도 문제 해결 방법 및 지도에 대한 연구가 미미한 실정이다. 본 연구에서는 작도 문제의 특성, 작도 문제의 해결 방법 및 지도에 관한 접근을 모색할 것이다. 이를 통해, 학습자들이 다양한 탐색 활동 속에서 작도 문제를 탐구할 수 있는 이론적, 실제적 근거를 제시하고, 수학 심화 학습에 작도 문제를 이용할 수 있는 가능성을 제시할 것이다.

  • PDF

Improvement of Students' Problem Finding and Hypothesis Generating Abilities: Gifted Science Education Program Utilizing Mendel's Law (문제발견 및 가설설정 능력 신장 과학영재교육프로그램 개발: 멘델의 과학적 사고과정 적용)

  • Kim, Soon-Ok;Kim, Bong-Sun;Seo, Hae-Ae;Kim, Young-Min;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.1033-1053
    • /
    • 2011
  • In the process of establishing the principle of genetics, Mendel discovered problems based on various observations. Mendel's scientific thinking ability can be effective if this ability is embedded in gifted science education programs. The study aims to develop a science gifted education program utilizing Mendel's scientific thinking ability shown in the principles of genetics and examine students' changes in scientific thinking ability before and after the program implementation. For the program development, first, the characteristics of Mendel's scientific thinking ability in the process of establishing the principle of genetics were investigated and extracted the major elements of inquiry. Second, the science gifted education programs was developed by applying the inquiry elements from the Mendel's Law. The program was implemented with 19 students of $7^{th}$, $8^{th}$ graders who attend the science gifted education center affiliated with university during July 2011. The Mendel's scientific thinking ability was classified into induction, deduction, and integration. The elements of inquiry extracted from the Mendel's scientific thinking include making observation, puzzling observation, proposing causal questions, generating hypothesis, drawing inference, designing experiment, gathering and analyzing data, drawing conclusions, and making generalization. With applying these elements, the program was developed with four phases: $1^{st}$ - problem finding; $2^{nd}$ - hypothesis generating; $3^{rs}$ - hypothesis testing and $4^{th}$ - problem solving. After implementation, students' changes in scientific thinking ability were measured. The findings from the study are as follows: First, students' abilities of problem finding is significantly (p<.05) increased. Second, students' abilities of hypothesis generating is significantly (pp<.05) increased.

A Case Study on Teaching Solutions Exploration of Wythoff's Game through Using the Analogy for the Elementary Gifted Class (초등학교 영재학급에서 유추를 활용한 위도프 게임의 해법 탐구 지도 방법)

  • Bae, Sin Young;Song, Sang Hun
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.1
    • /
    • pp.95-111
    • /
    • 2015
  • The purpose of this study is to analyze cases on teaching solutions exploration of Wythoff's game through using the analogy for the gifted elementary students, to suggest useful teaching methods. Students recognized structural similarity among problems on the basis of relevance of conditions of problems. The discovery of structural similarity improves the ability to solve problems. Although 2 groups-NIM game with surface similarity is not helpful in solving Wythoff's game, Queen's move game with structural similarity makes it easier for students to solve Wythoff's game. Useful teaching methods to find solutions of Wythoff's game through using the analogy are as follow. Encoding process helps students make sense of the game. It is significant to help students realize how many stones are remained and how the location of Queen can be expressed by the ordered pair. Inferring process helps students find a solution of 2 groups-NIM game and Queen's move game. It is necessary to find a winning strategy through reversely solving method. Mapping process helps students discover surface similarity and structural similarity through identifying commonalities between the two games. It is crucial to recognize the relationship among the two games based on the teaching in the Encoding process. Application process encourages students to find a solution of Wythoff's game. It is more important to find a solution by using the structural similarity of the Queen's move game rather than reversely solving method.

The Effect of Inquiry Teaching Strategy Enhancing the Logical Thinking Skill through the Science Teaching about the 1st Year Students of the Junior High School (과학 수업에서 논리적 사고력 강화 탐구 교수 전략이 중학교 1학년 학생들의 논리적 사고력에 미치는 효과)

  • Hong, Hyein;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.667-680
    • /
    • 2014
  • The purpose of this study was to develop teaching stratege focused on Conservational reasoning, Proportional reasoning, Variable-controlling reasoning, Probabilitic reasoning, Correlational reasoning, Combinational reasoning and investigate its effects on enhancing students' logical thinking skills through the science teaching on common education. And the teaching materials was implemented to 110 students in middle school over about six months. The results indicated that the experimental group presented statistically meaningful improvement in logical thinking skills (p<05). Especially, this teaching stratege was effective on Conservational reasoning, Variable-controlling reasoning, Combinational reasoning but was not effective on Proportional reasoning, Probabilitic reasoning, Correlational reasoning (p<.05). Logical thinking according to the teaching strategy skill was not affected by gender, cognitive level, academic achievement (p<.05).

Fundamental Structure of Knowledge in Nursing (간호학의 기본 지식 구조)

  • Lee, Kwang-Ja
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.3
    • /
    • pp.127-144
    • /
    • 1983
  • 오늘날은 과학문명의 발달로 인하여 기존지식의 수명이 점차 짧아져 가고있는 것이 특징이다. 지식의 증가는 단순히 지식의 양을 증가시키는 역할뿐 아니라 많은 기존지식을 불충분하고 쓸모 없는 것으로 바꿔버리게 한다. 그러므로 학교에서는 학생들에게 어떤 특정지식의 축척보다는 그 학문에 내재해 있는 기본적인 지식의 구조를 학습하게 하여 여러 가지 개념을 관련시키는 논리적 방법을 학습하게 하고 합리적인 탐구방법을 구사할 수 있도록 하여 변화하는 미지의 세계에 대처해 나갈 수 있도록 하는 것이 중요하다. 본 연구는 간호학의 기본 지식구조를 확인하는데 그 목적이 있다. 본 연구를 하게 된 동기는 간호업무의 근거로 활용도리 지식체계는 교육과정의 조직원리로 작용될 유형이나 구조를 지니고 있으며 이런 유형이나 구조를 중심으로 간호교육과정을 구성하는 것이 간호교육에 필수적이라는 문제에서 비롯되었다. 연구방법은 1982년 9월부터 1983년 5월에 걸쳐 간호학 문헌을 체계적으로 분석하여 간호학의 개념적 지식구조와 구문적 지식구조를 확인하였다. 그 결과 얻어진 결론은 다음과 같다. 1. 간호학의 개념적 구조: 모든 학문에는 탐구의 대상인 특수현상을 설명하고 서술하는데 활용되는 일련의 실질적, 개념적 구조를 가지고 있다. 그러나 그 학문의 중요한 부분 또는 중심을 포함하고 있는 개념들이 그 분야 또는 학문의 개략이라고 할 수 있는데 연구결과 간호학에서 가장 높은 순위의 대표적 특질을 지닌 개념은 인간, 건강, 환자/대상자, 간호, 행동으로 분석되었다. 2. 간호학의 구문적 지식구조 : 지식구조의 두 번째 요소인 학문의 구문(syntax)은 간호학에서의 특징적인 탐구방법과 관련되나 개념적 구조와 마찬가지로 탐구방법은 학문에 따라 다르며 그 분야의 주요양상을 나타낸다. 연구결과 간호학에서의 특징적인 탐구방법은 공동적으로 간호과정(nursing process)임이 나타났으며 그 요인으로는 사정, 진단, 계획, 수행, 평가의 다섯 단계로 분석되었다.

  • PDF