• Title/Summary/Keyword: 탈질화

Search Result 68, Processing Time 0.036 seconds

Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13 (Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화)

  • Jung, Taeck-Kyung;Ra, Chang-Six;Joh, Ki-Seong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2016
  • In order to find an efficient bacterial strain that can carry out nitrification and denitrification simultaneously, we isolated many heterotrophic nitrifying bacteria from wastewater treatment plant. One of isolates NS13 showed high removal rate of ammonium and was identified as Alcaligenes faecalis by analysis of its 16S rDNA sequence, carbon source utilization and fatty acids composition. This bacterium could remove over 99% of ammonium in a heterotrophic medium containing 140 mg/L of ammonium at pH 6-9, $25-37^{\circ}C$ and 0-4% of salt concentrations within 2 days. It showed even higher ammonium removal at higher initial ammonium concentration in the medium. A. faecalis NS13 could also reduce nitrate and nitrous oxide by nitrate reductase and nitrous oxide reductase, respectively, which was confirmed by detection of nitrate reductase gene, napA, and nitrous oxide reducase gene, nosZ, by PCR. One of metabolic intermediate of denitrification, $N_2O$ was detected from headspace of bacterial culture. Based on analysis of all nitrogen compounds in the bacterial culture, 42.8% of initial nitrogen seemed to be lost as nitrogen gas, and 46.4% of nitrogen was assimilated into bacterial biomass which can be removed as sludge in treatment processes. This bacterium was speculated to perform heterotrophic nitrification and aerobic denitrification simultaneously, and may be utilized for N removal in wastewater treatment processes.

생물막 연속회분식 반응기를 이용한 영양염류의 동시제거에 관한 연구

  • 박민정;김동석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.117-121
    • /
    • 2003
  • SBR과 SBBR 모두 대부분의 유기물은 포기기간에 소모되었으며, SBBR의 경우 부족한 유기물 조건에서도 원활한 탈질화 반응이 일어난 것을 볼 때, 유기물 농도가 낮은 우리나라의 하수에 적합한 공정으로 생각된다. 질산화 속도에 있어서는 유기물과 용존산소의 접촉기회에 있어 유리한 조건을 가진 SBR이 더 크게 나타났다. 그러나 탈질화 반응에 있어서는 SBBR이 더 높은 것으로 나타났다. SBR의 경우 높은 $NO_3$의 존재로 인해 1차 비포기 기간중 인의 방출은 거의 발생하지 않았으나, SBBR의 경우 1차 비포기 기간에 인 방출과 1차 포기기간에 인 섭취가 일어났다.

  • PDF

Denitrification Potential and Denitrifier Abundance in Downstream of Dams in Temperate Streams (온대지역 댐 하류의 탈질화 능력과 탈질화균 분포)

  • Vo, Nguyen Xuan Que;Lee, Seung-Hoon;Doan, Tuan Van;Jung, Sokhee P.;Kang, Hojeong
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.137-151
    • /
    • 2014
  • Various studies have been conducted to investigate effects of dams on river ecosystems, but less information is available regarding damming impacts on downstream denitrification. We measured denitrification enzyme activity (potential denitrification rate) and denitrifier abundances (using nirS, nirK, and nosZ as markers) in dammed headstreams of the Nakdong River in South Korea. Sediments in Phragmites-dominated riparian areas and in-stream areas across streams (dammed vs. reference) with different streambed materials (gravel and sand) were sampled occasionally. We hypothesized that (i) the higher available N and C contents in sediments downstream of dams foster larger denitrifier communities than in the reference system and (ii) differences in potential denitrification rates across the systems correspond with denitrifier abundances. Despite 30 years of different hydrological management with dams and greater inorganic N and DOC contents in sediments downstream of dams, compared to the references, abundances of denitrifier communities and potential denitrification rates within the whole sediment were not significantly different across the systems. However, nirS and nosZ denitrifier abundances and potential denitrification rates were considerably increased in specific sediments downstream of dams (gravelly riparian and sandy in-stream) with regard to flooding events and seasonal temperature variation. nirK was not amplified in all sediments. Canonical correspondence analyses (CCA) revealed that the relationship between abundances of denitrifier communities and nutrient availabilities and potential denitrification rates was a weak one.

Detection of Denitrifying Bacteria in Groundwater by PCR (PCR을 이용한 지하수 내의 탈질화 세균의 검출)

  • Shin, Kyu-Chul;Suh, Mi-Yeon;Han, Myung-Soo;Choi, Yong-Keel
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.4
    • /
    • pp.321-324
    • /
    • 2001
  • Groundwater samples were collected at 6 sites in Seoul area. DNA extraction from the sample was performed by the boiling method. Samples were boiled with guanidinium thyocyanate and phenol-chloroform. One set of primer was designed for amplification of 16S rDNA. For detection of denitrifying bacteria in groundwater sample, the author used primer sets consensus regions in gene sequences encoding the two forms of nitrite reductase (NIR), a key enzyme in the denitrification pathway. Two sets of PCR primer were designed to amplify $cd_1$-and Cu-nir. We confirmed the existence of denitrifying bacteria in 3 sites using $cd_1$-nir primer and in 4 sites using Cu-nir primer.

  • PDF

Design of Denitrification Reactor by Using Permeabilized and Immobilized Paracoccus denitrificans (Permeabilized Paracoccus denitrificans를 이용한 고정화 균주의 탈질화 반응기 설계)

  • Yun, Mi-Sun;Song, Ju-Yeong;Park, Keun-Ho
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.100-105
    • /
    • 2005
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. Denitrification bacterium, Paracoccus denitrificans (KCTC 2350) is employed to estimate the denitrification ability and the characteristics. In the immobilized biological reactor system, the measurement of absolute amount of active strain in the reactor is comparatively difficult or impossible. In this. study, a reactor was designed with the unwoven texture wrapped peep holed plastic tube to calculate the absolute amount of active strain by comparing the activity of the permeabilized and or immobilized reactor and the free cell reactor The reactor system was continuous stirred tank reactor and the reaction rate of substrate consumption was assumed to satisfy the Michaelis-Menten equation. The effluent concentration of nitrate and nitrite was measured to estimate the apparent parameter of Michaelis-Menten equation. As a result, we found that the amount of immobilized active strain was figured out to be half of the total active strain in the reactor and the time required to be reached in the equilibrium state in the permeabilized and or immobilized reactor system was figured out to be shorter than that of the free cell reactor system.

Review of Nitrous Oxide Emission by Denitrification in Subsurface Soil Environment (심층토에 있어서 탈질화에 의한 $N_2 O$ 방출의 평가)

  • Chung Doug-Young;Jin Hyun-O;Lee Chaang-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.2
    • /
    • pp.160-164
    • /
    • 1999
  • Subsurface environments, including the intermediate vadose zone and aquifers, may be contributing to increased atmospheric concentrations of $N_2$O. Denitrification appears to be the major source of $N_2$O in the subsurface environment. In the intermediate vadose zone, the level of denitrifying activity is dependent on the soil morphology, particularly stratified layers within the soil profile, which impede water and solute movement and create conditions favorable for denitrification. Movement of organic C from the soil surface appears to support denitrifying activity by providing an energy source and increasing the consumption of $O_2$. Denitrirication and $N_2$O production have been observed in aquifers but appear to be of greatest significance in shallow unconfined aquifers. The lack of organic C, N $O_2$, or anaerobiosis is often a limiting factor for activity but seems to be site specific. The presence of denitrifying bacteria does not appear to be a major limitation, based on published results, but the ubiquity of denitrifiers in subsurface environments needs to be confirmed. The fate of the $N_2$O produced in subsurface environments is unknown. Transport of $N_2$O by up ward diffusion, by outgassing at contacts with surface waters, and by ground water use need to be quantified to determine the contribution to atmospheric $N_2$O. Contamination of subsurface environment with N $O_3$$^{ }$ and organics has the potential for increasing the contribution to atmospheric $N_2$O by enhancing denitrification .

  • PDF

Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기에서의 폐수 탈질화)

  • 신승훈;서일순;장인용
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.337-343
    • /
    • 2001
  • Activated carbon particles of 1.274 mm diameter and sand particles of 0.455 mm diameter were employed as the support of the biofilm formed in fluidized bed biofilm reactors(FBBRs) for the wastewater denitrification. Ethanol was used as the electron donor in the anoxic respiration. The steady-state biofilm thickness increased as the nitrate loading rate increased, and the activated carbon particles induced thicker biofilm than the sand particles. The FBBRs with sand support showed higher efficiency and rate of the nitrate removal than those with activated carbon support, and exhibited the biomass concentration of 37 kg/㎥ and the nitrate removal rate of 21 kg N/㎥d.

  • PDF