Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4021

Denitrification Potential and Denitrifier Abundance in Downstream of Dams in Temperate Streams  

Vo, Nguyen Xuan Que (School of Civil and Environmental Engineering, Yonsei University)
Lee, Seung-Hoon (School of Civil and Environmental Engineering, Yonsei University)
Doan, Tuan Van (School of Civil and Environmental Engineering, Yonsei University)
Jung, Sokhee P. (School of Civil and Environmental Engineering, Yonsei University)
Kang, Hojeong (School of Civil and Environmental Engineering, Yonsei University)
Publication Information
Korean Journal of Microbiology / v.50, no.2, 2014 , pp. 137-151 More about this Journal
Abstract
Various studies have been conducted to investigate effects of dams on river ecosystems, but less information is available regarding damming impacts on downstream denitrification. We measured denitrification enzyme activity (potential denitrification rate) and denitrifier abundances (using nirS, nirK, and nosZ as markers) in dammed headstreams of the Nakdong River in South Korea. Sediments in Phragmites-dominated riparian areas and in-stream areas across streams (dammed vs. reference) with different streambed materials (gravel and sand) were sampled occasionally. We hypothesized that (i) the higher available N and C contents in sediments downstream of dams foster larger denitrifier communities than in the reference system and (ii) differences in potential denitrification rates across the systems correspond with denitrifier abundances. Despite 30 years of different hydrological management with dams and greater inorganic N and DOC contents in sediments downstream of dams, compared to the references, abundances of denitrifier communities and potential denitrification rates within the whole sediment were not significantly different across the systems. However, nirS and nosZ denitrifier abundances and potential denitrification rates were considerably increased in specific sediments downstream of dams (gravelly riparian and sandy in-stream) with regard to flooding events and seasonal temperature variation. nirK was not amplified in all sediments. Canonical correspondence analyses (CCA) revealed that the relationship between abundances of denitrifier communities and nutrient availabilities and potential denitrification rates was a weak one.
Keywords
denitrification enzyme activity; denitrifier abundance; nitrogen cycle; stream regulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smith, C.J. and Osborn, A.M. 2009. Advantages and limitations of quantitative PCR (q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6-20.   DOI   ScienceOn
2 Smith, M.S. and Tiedje, J.M. 1979. Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem. 11, 7.
3 Solomon, C.T., Hotchkiss, E.R., Moslemi, J.M., Ulseth, A.J., Stanley, E.H., Hall, R.O., and Flecker, A.S. 2009. Sediment size and nutrients regulate denitrification in a tropical stream. J. North American Benthological Society 28, 480-490.   DOI   ScienceOn
4 Song, K., Lee, S.H., Mitsch, W.J., and Kang, H. 2010. Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biol. Biochem. 42, 1721 -1727.   DOI   ScienceOn
5 Stanley, E.H. and Doyle, M.W. 2002. A geomorphic perspective on nutrient retention following dam removal. BioScience 52, 693-701.   DOI   ScienceOn
6 Starr, R.C. and Gillham, R.W. 1993. Denitrification and organic carbon availability in two aquifers. Ground Water 31, 934-947.   DOI   ScienceOn
7 Stevenson, B.S. and Schmidt, T.M. 2004. Life history implications of rRNA gene copy number in Escherichia coli. Appl. Environ. Microbiol. 70, 6670-6677.   DOI   ScienceOn
8 Strauss, E.A., Richardson, W.B., Cavanaugh, J.C., Bartsch, L.A., Kreiling, R.M., and Standorf, A.J. 2006. Variability and regulation of denitrification in an Upper Mississippi River backwater. J. North American Benthological Society 25, 596-606.   DOI   ScienceOn
9 Stres, B., Danevcic, T., Pal, L., Fuka, M.M., Resman, L., Leskovec, S., Hacin, J., Stopar, D., Mahne, I., and Mandic-Mulec, I. 2008. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 66, 110-122.   DOI   ScienceOn
10 Philippot, L., Andert, J., Jones, C.M., Bru, D., and Hallin, S. 2011. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for $N_{2}O$ emissions from soil. Glob. Change Biol. 17, 1497-1504.   DOI   ScienceOn
11 Philippot, L. and Hallin, S. 2005. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr. Opin. Microbiol. 8, 234-239.   DOI   ScienceOn
12 Philippot, L., Hallin, S., and Schloter, M. 2007. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agronomy 96, 249-305.   DOI
13 Pinardi, M., Bartoli, M., Longhi, D., Marzocchi, U., Laini, A., Ribaudo, C., and Viaroli, P. 2009. Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediments. J. Limnol. 68, 133-145.   DOI
14 Pinay, G., Black, V.J., Planty-Tabacchi, A.M., Gumiero, B., and Decamps, H. 2000. Geomorphic control of denitrification in large river floodplain soils. Biogeochemistry 50, 163-182.   DOI   ScienceOn
15 Rastogi, G. and Sani, R. 2011. Molecular techniques to assess microbial community structure, function, and dynamics in the environment, pp. 29-57. In Ahmad, I., Ahmad, F., and Pichtel, J. (eds.), Microbes and microbial technology, Springer, New York, USA.
16 Maingi, J.K. and Marsh, S.E. 2002. Quantifying hydrologic impacts following dam construction along the Tana River, Kenya. J. Arid Environ. 50, 53-79.   DOI   ScienceOn
17 Rich, J.J., Heichen, R.S., Bottomley, P.J., Cromack, K., and Myrold, D.D. 2003. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl. Environ. Microbiol. 69, 5974-5982.   DOI   ScienceOn
18 Seitzinger, S., Harrison, J., Bohlke, J., Bouwman, A., Lowrance, R., Peterson, B., Tobias, C., and Van Drecht, G. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064 -2090.   DOI   ScienceOn
19 Mackelprang, R., Waldrop, M.P., DeAngelis, K.M., David, M.M., Chavarria, K.L., Blazewicz, S.J., Rubin, E.M., and Jansson, J.K. 2011. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368-371.   DOI   ScienceOn
20 McClain, M.E., Boyer, E.W., Dent, C.L., Gergel, S.E., Grimm, N.B., Groffman, P.M., Hart, S.C., Harvey, J.W., Johnston, C.A., Mayorga, E., and et al. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301-312.   DOI
21 Miller, M.N., Zebarth, B.J., Dandie, C.E., Burton, D.L., Goyer, C., and Trevors, J.T. 2008. Crop residue influence on denitrification, $N_{2}O$ emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 40, 2553-2562.   DOI   ScienceOn
22 Mulholland, P.J., Helton, A.M., Poole, G.C., Hall, R.O., Hamilton, S.K., Peterson, B.J., Tank, J.L., Ashkenas, L.R., Cooper, L.W., Dahm, C.N., and et al. 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452, 202-246.   DOI   ScienceOn
23 Peralta, A.L., Matthews, J.W., and Kent, A.D. 2010. Microbial community structure and denitrification in a wetland mitigation bank. Appl. Environ. Microbiol. 76, 4207-4215.   DOI   ScienceOn
24 Myrold, D.D., Zeglin, L.H., and Jansson, J.K. 2013. The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci. Soc. America J. 78, 3-10.
25 Nilsson, C., Reidy, C.A., Dynesius, M., and Revenga, C. 2005. Fragmentation and flow regulation of the world's large river systems. Science 308, 405-408.   DOI   ScienceOn
26 Page, A.L. 1982. Methods of soil analysis. Part 2: Chemical and microbiological properties., Soil Science Society of America Madison, WI, USA.
27 Kong, A.Y., Hristova, K., Scow, K.M., and Six, J. 2010. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523-1533.   DOI   ScienceOn
28 Leps, J. and Smilauer, P. 2003. Multivariate analysis of ecological data using CANOCO, Cambridge University Press.
29 Ligi, T., Truu, M., Truu, J., Nolvak, H., Kaasik, A., Mitsch, W.J., and Mander, U. 2013. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created riverine wetland complex. Ecol. Engineer., in press.
30 Lin, X., Tfaily, M.M., Green, S.J., Steinwegd, J.M., Chanton, P., Imvittaya, A., Chanton, J.P., Cooper, W., Schadt, C., and Kostk, J.E. 2014. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl. Environ. Microbiol. 80, 3531-3540.   DOI   ScienceOn
31 Jenkins, M.C. and Kemp, W.M. 1984. The coupling of nitrification and denitrification in two estuarine sediments. Limnol. Oceanogr. 29, 11.
32 Luo, J., Tillman, R., and Ball, P. 1999. Factors regulating denitrification in a soil under pasture. Soil Biol. Biochem. 31, 913-927.   DOI   ScienceOn
33 Ma, W.K., Bedard-Haughn, A., Siciliano, S.D., and Farrell, R.E. 2008. Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils. Soil Biol. Biochem. 40, 1114-1123.   DOI   ScienceOn
34 IPCC. 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change.
35 Jones, C.M., Graf, D.R., Bru, D., Philippot, L., and Hallin, S. 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7, 417-426.   DOI
36 Jones, C.M. and Hallin, S. 2010. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J. 4, 633-641.   DOI
37 Jones, C.M., Stres, B., Rosenquist, M., and Hallin, S. 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25, 1955-1966.   DOI   ScienceOn
38 Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D., and Philippot, L. 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957-5962.   DOI   ScienceOn
39 Knapp, C.W., Dodds, W.K., Wilson, K.C., O'Brien, J.M., and Graham, D.W. 2009. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. Environ. Sci. Technol. 43, 4273-4279.   DOI   ScienceOn
40 Kang, H.J., Freeman, C., Lee, D., and Mitsch, W.J. 1998. Enzyme activities in constructed wetlands: implication for water quality amelioration. Hydrobiologia 368, 231-235.   DOI
41 Cho, H.J., Jin, S.N., Cho, K.H., Woo, H.S., and Egger, G. 2012. Establishment and expansion of willows after dam operation in a monsoonal sandy stream. In Mader, H. and Kraml, J. (eds.). 9th International Symposium on Ecohydraulics. Vienna, Austria.
42 Choi, S.U.K., Yoon, B., and Woo, H. 2005. Effects of dam-induced flow regime change on downstream river morphology and vegetation cover in the Hwang River, Korea. River Res. Applications 21, 315-325.   DOI   ScienceOn
43 Chun, K.C., Chang, R.W., Williams, G.P., Chang, Y.S., Tomasko, D., LaGory, K., Ditmars, J., Chun, H.D., and Lee, B.K. 2001. Water quality issues in the Nakdong River Basin in the Republic of Korea. Environ. Engineer. Policy 2, 12.
44 Dandie, C.E., Burton, D.L., Zebarth, B.J., Henderson, S.L., Trevors, J.T., and Goyer, C. 2008. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl. Environ. Microbiol. 74, 5997-6005.   DOI   ScienceOn
45 Dandie, C.E., Miller, M.N., Burton, D.L., Zebarth, B.J., Trevors, J.T., and Goyer, C. 2007. Nitric oxide reductase-targeted real-time PCR quantification of denitrifier populations in soil. Appl. Environ. Microbiol. 73, 4250-4258.   DOI   ScienceOn
46 Attard, E., Recous, S., Chabbi, A., De Berranger, C., Guillaumaud, N., Labreuche, J., Philippot, L., Schmid, B., and Le Roux, X. 2011. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob. Change Biol. 17, 1975-1989.   DOI   ScienceOn
47 Dandie, C.E., Wertz, S., Leclair, C.L., Goyer, C., Burton, D.L., Patten, C.L., Zebarth, B.J., and Trevors, J.T. 2011. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 77, 69-82.   DOI   ScienceOn
48 Davidsson, T.E. and Stahl, M. 2000. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil Sci. Soc. America J. 64, 1129-1136.   DOI   ScienceOn
49 Dong, L.F., Smith, C.J., Papaspyrou, S., Stott, A., Osborn, A.M., and Nedwell, D.B. 2009. Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne estuary, United Kingdom). Appl. Environ. Microbiol. 75, 3171-3179.   DOI   ScienceOn
50 Boyer, E., Goodale, C., Jaworski, N., and Howarth, R. 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57, 137-169.   DOI   ScienceOn
51 Braker, G., Fesefeldt, A., and Witzel, K.P. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64, 3769-3775.
52 Chen, N., Wu, J., Chen, Z., Lu, T., and Wang, L. 2014. Spatial-temporal variation of dissolved $N_{2}$ and denitrification in an agricultural river network, southeast China. Agricul. Ecosyst. Environ. 189, 1-10.   DOI   ScienceOn
53 Burke, M., Jorde, K., and Buffington, J.M. 2009. Application of a hierarchical framework for assessing environmental impacts of dam operation: changes in streamflow, bed mobility and recruitment of riparian trees in a western North American river. J. Environ. Manage. 90, S224-S236.   DOI   ScienceOn
54 Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kuista, M., Mueller, R., and Nolan, T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611-622.   DOI   ScienceOn
55 Cao, Y.P., Green, P.G., and Holden, P.A. 2008. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl. Environ. Microbiol. 74, 7585-7595.   DOI   ScienceOn
56 Groffman, P.M., Howard, G., Gold, A.J., and Nelson, W.M. 1996. Microbial nitrate processing in shallow groundwater in a riparian forest. J. Environ. Qual. 25, 1309-1316.
57 Graham, D.W., Trippett, C., Dodds, W.K., O'Brien, J.M., Banner, E.B.K., Head, I.M., Smith, M.S., Yang, R.K., and Knapp, C.W. 2010. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams. Environ. Pollut. 158, 3225-3229.   DOI   ScienceOn
58 Grant, G.E., Schmidt, J.C., and Lewis, S.L. 2003. A peculiar river: Geology, geomorphology, and hydrology of the Deschutes river, Oregon, pp. 203-219. AGU, Washington DC, USA.
59 Groffman, P.M., Holland, E.A., Myrold, D.D., Robertson, G.P., and Zou, X. 1999. Standard soil methods for long-term ecological research. In Robertson, G.P., Bledsoe, C.S., Coleman, D.C., and Sollins, P. (eds.), pp. 272-290, Oxford University Press, New York, USA.
60 Hallin, S., Jones, C.M., Schloter, M., and Philippot, L. 2009. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J. 3, 597 -605.   DOI   ScienceOn
61 Henry, S., Baudoin, E., Lopez-Gutierrez, J.C., Martin-Laurent, F., Brauman, A., and Philippot, L. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59, 327-335.   DOI   ScienceOn
62 Findlay, S., Mulholland, P.J., Hamilton, S., Tank, J., Bernot, M., Burgin, A., Crenshaw, C., Dodds, W., Grimm, N., and McDowell, W. 2011. Cross-stream comparison of substrate-specific denitrification potential. Biogeochemistry 104, 381-392.   DOI
63 Huang, S., Chen, C., Wu, Q., Zhang, R., and Yang, X. 2011. Distribution of typical denitrifying functional genes and diversity of the nirS-encoding bacterial community related to environmental characteristics of river sediments. Biogeosciences Discussions 8, 5251-5280.   DOI
64 Ellis, M.J., Grossmann, J.G., Eady, R.R., and Hasnain, S.S. 2007. Genomic analysis reveals widespread occurrence of new classes of copper nitrite reductases. J. Biol. Inorg. Chem. 12, 1119-1127.   DOI
65 Enwall, K., Throback, I.N., Stenberg, M., Soderstrom, M., and Hallin, S. 2010. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl. Environ. Microbiol. 76, 2243-2250.   DOI   ScienceOn
66 Fisher, S.G., Heffernan, J.B., Sponseller, R.A., and Welter, J.R. 2007. Functional ecomorphology: Feedbacks between form and function in fluvial landscape ecosystems. Geomorphology 89, 84-96.   DOI   ScienceOn
67 Friedl, G. and Wuest, A. 2002. Disrupting biogeochemical cycles - Consequences of damming. Aquatic Sci. 64, 55-65.   DOI
68 Frossard, A. 2011. Microbial dynamics during stream ecosystem succession: community structure and enzyme activities., Swiss Federal Institute of Technology Zurich, Switzerland.
69 Genkai-Kato, M., Mitsuhashi, H., Kohmatsu, Y., Miyasaka, H., Nozaki, K., and Nakanishi, M. 2005. A seasonal change in the distribution of a stream-dwelling stonefly nymph reflects oxygen supply and water flow. Ecol. Res. 20, 223-226.   DOI   ScienceOn
70 Gergel, S.E., Carpenter, S.R., and Stanley, E.H. 2005. Do dams and levees impact nitrogen cycling? Simulating the effects of flood alterations on floodplain denitrification. Glob. Change Biol. 11, 1352-1367.   DOI   ScienceOn
71 Udy, J.W., Fellows, C.S., Bartkow, M.E., Bunn, S.E., Clapcott, J.E., and Harch, B.D. 2006. Measures of nutrient processes as indicators of stream ecosystem health. Hydrobiologia 572, 89-102.   DOI
72 Verbaendert, I., De Vos, P., Boon, N., and Heylen, K. 2011. Denitrification in Gram-positive bacteria: an underexplored trait. Biochem. Soc. Trans. 39, 254-258.   DOI   ScienceOn
73 Wallenstein, M.D., Myrold, D.D., Firestone, M., and Voytek, M. 2006. Environmental controls on denitrifying communities and denitrification rates: Insights from molecular methods. Ecol. Appl. 16, 2143-2152.   DOI   ScienceOn
74 Welti, N., Bondar-Kunze, E., Singer, G., Tritthart, M., Zechmeister-Boltenstern, S., Hein, T., and Pinay, G. 2012. Large-scale controls on potential respiration and denitrification in riverine floodplains. Ecol. Engineer. 42, 73-84.   DOI   ScienceOn
75 Wohl, E.E. and Cenderelli, D.A. 2000. Sediment deposition and transport patterns following a reservoir sediment release. Water Resour. Res. 36, 319-333.   DOI   ScienceOn
76 Zumft, W.G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533-616.
77 Skiba, U. and Smith, K.A. 2000. The control of nitrous oxide emissions from agricultural and natural soils. Chemosphere - Global Change Sci. 2, 379-386.   DOI
78 Burgin, A. and Hamilton, S. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5, 89-96.   DOI   ScienceOn
79 Fierer, N., Lauber, C.L., Ramirez, K.S., Zaneveld, J., Bradford, M.A., and Knight, R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007-1017.   DOI   ScienceOn
80 Liu, X.D., Tiquia, S.M., Holguin, G., Wu, L.Y., Nold, S.C., Devol, A.H., Luo, K., Palumbo, A.V., Tiedje, J.M., and Zhou, J.Z. 2003. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico. Appl. Environ. Microbiol. 69, 3549-3560.   DOI   ScienceOn
81 Leach, M. 2009. Influence of an upstream dam on riparian zone hydrology and shallow groundwater nitrate dynamics. Thesis, McMaster University, Hamilton, Ontario.
82 Kondolf, G.M., Boulton, A.J., O'Daniel, S., Poole, G.C., Rachel, F.J., Stanley, E.H., Wohl, E., Bang, A., Carlstrom, J., Cristoni, C., and et al. 2006. Process-based ecological river restoration: Visualizing three-dimensional connectivity and dynamic vectors to recover lost linkages. Ecol. Soc. 11, 5.
83 Hill, A.R., Devito, K.J., Campagnolo, S., and Sanmugadas, K. 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51, 193-223.   DOI   ScienceOn
84 Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., and Tilman, D. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7, 737-750.
85 Philippot, L., Cuhel, J., Saby, N.P.A., Cheneby, D., Chronakova, A., Bru, D., Arrouays, D., Martin-Laurent, F., and Simek, M. 2009. Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ. Microbiol. 11, 1518-1526.   DOI   ScienceOn