• Title/Summary/Keyword: 탄화타이타늄

Search Result 6, Processing Time 0.022 seconds

Chipped Titanium Scraps as Raw Materials for Cutting Tools (타이타늄 밀링/터닝 스크랩의 절삭공구 소재화)

  • Kwon, Hanjung;Lim, Jae-Won
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Scraps are a byproduct of the machining process used for transforming titanium ingots into useful mechanical parts. Scraps take two forms, namely, bulky scraps, which are produced by cutting, and chipped scraps, which are produced by milling. Bulky scraps are comparatively easier to recycle because of their small surface area and less oxygen content; as a result, they pose only a small risk of explosion. In contrast, chipped scraps pose a higher risk of explosion, because of which, their recycling is complicated, resulting in most such scraps being discarded. With the aim of avoiding this waste, we proposed a novel process for converting chipped scraps into stable carbide materials. Methods typically applied to reduce particle size and impair the formation of solid solution type phase in the carbide materials were used to improve the mechanical properties of carbides prepared from chipped scraps. Our novel recycling process reduced carbide production costs and improved carbide quality.

Vapor Phase Deposition and Characterization of Diamond Thin Films on Refractory Metals (내열금속 기판위에 다이아몬드 박막의 증착과 특성분석)

  • 홍성현;형준호
    • Korean Journal of Crystallography
    • /
    • v.5 no.1
    • /
    • pp.39-50
    • /
    • 1994
  • Diamond thin films were deposited on silicon, molybdebum, titanum and tugsten substrates, and were chlwntnizen using scanning electron microscopy, X-ray diffraction analysis and Raman spectroscopy. From the result of experiment in various deposition periods, it was found that found that were nucleated and grown on interlayed carbide layers, which were formed on refractory metal substrates at the initial stage of.

  • PDF

Corrosion Behaviors of TiC Ceramic Particulate Reinforced Steel Composites Fabricated by Liquid Pressing Infiltration Process in Salt Water Environment (용융가압함침공정으로 제조된 TiC 세라믹 입자 강화 철강복합재의 염수환경에서의 부식 특성)

  • Lee, Yeong-Hwan;Ko, Seongmin;Shin, Sangmin;Cho, Seungchan;Kim, Yangdo;Kim, Junghwan;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.251-255
    • /
    • 2020
  • In this study, TiC ceramic particulate reinforced steel composites was fabricated using a liquid pressing infiltration process. Studies were conducted on microstructure analysis and basic physical properties such as hardness and corrosion characteristics in salt water environment for comparison with commercial nodular cast iron. As a result of comparison of corrosion characteristics in a salt water environment, both corrosion potential and corrosion current density were lower than that of ductile graphite cast iron. The lower calculated corrosion rate confirms that the TiC-Fe metal composite has superior corrosion resistance than the cast iron.

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery (카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재)

  • Nam, Sanghee;Umrao, Sima;Oh, Saewoong;Oh, Il-Kwon
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.296-300
    • /
    • 2019
  • Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.

Microstructure and Wear Characteristics of TiC-SKD11 Composite Fabricated by Liquid Pressing Infiltration Process (용융가압함침 공정으로 제조한 TiC-SKD11 복합재료의 미세조직 및 내마모 특성)

  • Cho, Seungchan;Jo, Ilguk;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • Titanium carbide (TiC) reinforced SKD11 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure, mechanical properties, and wear characteristics of the fabricated 60 vol% TiC-SKD11 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength with 24% lower density as compared with SKD11. Improved wear resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC having strong interfacial bonding strength between TiC/SKD11 interface.

Microstructure and Properties of TiC-Inconel 718 Metal Matrix Composites Fabricated by Liquid Pressing Infiltration Process (용융가압함침 공정으로 제조된 고체적률 TiC-Inconel 718 금속복합재료의 미세조직 및 특성)

  • Cho, Seungchan;Lee, Yeong-Hwan;Ko, Seongmin;Park, Hyeonjae;Lee, Donghyun;Shin, Sangmin;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.158-162
    • /
    • 2019
  • Titanium carbide (TiC) reinforced Inconel 718 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure and mechanical properties of the fabricated 55 vol% TiC-Inconel 718 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength as compared with Inconel 718. It is believed that Mo and Nb, which are alloying elements in the matrix, diffuse and solidify into the TiC reinforcement, resulting in generation of core-rim structure with excellent interfacial properties.