• Title/Summary/Keyword: 탄소성유한요소해석

Search Result 9, Processing Time 0.029 seconds

탄소성유한요소법에 있어서 구성식의 응용

  • 김영석
    • Journal of the KSME
    • /
    • v.29 no.3
    • /
    • pp.270-278
    • /
    • 1989
  • 최근 탄소성체의 소성불안정 현상과 소성 변형집중화에 의한 연성파괴 거동의 해석에 유력한 수단으로 인식되고 있는 대변형 탄소성유한 요소법의 정식화에 대하여 소개하였다. 또한 이 유한요소법에 의한 각종 소성불안정 현상의 해석에 있어서 구성관계식의 선택은 매우 중요한 의미를 갖고 있어 자주 이용되고 있는 대표적인 구성식의 특성에 대해서 논하였다.

  • PDF

Elastic Plastic Finite Element Calculation of Standard Fracture Toughness Specimens (표준 파괴인성시험편에 대한 탄소성 유한요소해석)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 1994
  • The purpose of this study is elastic plastic finite element analysis for standard fracture toughness specimens. The principles of elastic-plastic fracture mechanics are shortly summarized and the special requirements for computational tools are derived. Possibilities to model the crack tip singularities are mentioned. The relevant fracture parameters like J-Integral and COD and their correlation are evaluated from elastic plastic finite element calculations of standard fracture toughnes specimens. The size and form of the plastic zone are shown. The comparion between experiment and caculation is discussed as well as the application of the limit load analysis.

  • PDF

Finite Element Method for Failure Analysis Considering Large Deformation and Strain Softening (대변형 탄소성유한요오법에 의한 재료의 연화현상을 고려한 파괴거동해석)

  • 김영민
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-38
    • /
    • 1997
  • Strain softening is observed for geomaterials such as rocks when they are sheared. The proper computational modelling for strain softening is very important because this behavior is closely related to failure in geotechnical problems. In this paper, we have investigated the proper FEM techniques for modelling strain softening in order to simulate failure behavior numerically. In showing numerical examples, the effects of element shape, mesh pattern and of imperfection and the difference between small and large deformation theories, of displacement control and pressure control after peak have been discussed.

  • PDF

Analysis of Blade Forming using an Elasto-Plastic Finite Element Method with Directional Reduced Integration (선향적저감적분을 이용한 탄소성 유한요소법에 의한 블레이드의 성형 해석)

  • Choi, Tae-Hoon;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.365-374
    • /
    • 1995
  • Numerical simulation of blade forming is carried out as stretch forming by an elasto-plastic finite element method. The method adopts a Lagrangian formulation, which incorporates large deformation and rotation, with a penalty method to treat the contact boundary condition. Numerical integration is done with a directional reduced integration scheme to avoid shear locking. The numerical results demonstrates various final shapes of blades which depend on the variation of the stretching force. The strain distributions in deformed blades are also obtained with the variation of the stretching force.

  • PDF

Evaluation of elastic-plastic behavior in MMC interface according to the reinforced fiber placement structure (강화섬유 배치구조에 따른 MMC계면에서의 탄소성거동 평가)

  • Kang, Ji-Woong;Kim, Sang-Tae;Kwon, Oh-Heon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.410-414
    • /
    • 2004
  • Under longitudinal loading continuous fiber reinforced metal matrix composite(MMC) have interpreted an outstanding performance. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, elastic-plastic behavior of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber placement(square and hexagon) and fiber volume fractions were studied numerically. The interface was treated as three thin layer (with different properties) with a finite thickness between the fiber and the matrix. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

  • PDF

A Study of the Buckling/plastic Collapse Behaviour of Ship Plates with Secondary Buckling (2차좌굴을 포함하는 선체판의 탄소성거동에 관한 연구)

  • Ko, Jae-Yong;Lee, Don-Chul;Yu, Young-Hun;Cho, Young-Tae;Park, Sung-Hyeon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The plate bucking is very important design criteria when the ship is composed of high tensile steel plates. The structures under the action of excessive exhibit local failure associated with bucking until they reach the ultimate limit state as a whole. Precise assessment of the behaviour of plate above primary buckling load is important. In this connection, series of elastic plastic large deflection analyses are performed on rectangular plates with aspect ratio 1.4 applying the finite element method. In this paper, the buckling/plastic collapse behavior of ship plates with secondary buckling is investigated. It has found that the other deflection componentes also increase with the increase of compressive load above the primary buckling load.

Analysis of Forming Limit for Circular Bonded Sheet Metals by Shear Band Formation (전단띠 형성에 의한 원형접합판의 변형한계 해석)

  • 정태훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.127-132
    • /
    • 2001
  • By the use of a similar numerical method as the forming limit strain by coating method of coated sheet metals is investigated, in which the FEM is applied and J2G(J2-Gotohs Corner Theory) is utilized as the plasticity constitutive equa-tion. Circular bonded sheet metals with dissimilar sheets on both surface planes are stretched in a plane -strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such com-posite sheets are clearly illustrated. It is concluded that, it the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighed according thickness.

  • PDF

Numerical Analysis for Growth Behavior of Sawtoothed Interface by the compression of Dissimilar Blocks Twinned (이종재료의 압축에 의한 경계면의 성장거동에 관한 수치해석)

  • 정태훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.233-236
    • /
    • 1999
  • In this paper. Compression in the case where dissimilar blocks are twinned variously are carried out in the condition of lubricated interface. The degree of growth is experimentally investigated. Moreover, numerical simulations are carried out by the elastic-plastic FEM for the case of the dissimilar blocks with the initial sawtooth angle of $60^{\circ}$ . The dissimilar blocks are twinned, larger difference between material properties leads smaller growth, and the degreased interface leads smaller growth than that in the lubricated one. Furthermore, by the simulation of compression where dissimilar blocks are twinned, it is confirmed that the tendency of the general deformation pattern is very similar to the experiment.

  • PDF