• Title/Summary/Keyword: 탄소섬유 강화플라스틱

Search Result 147, Processing Time 0.021 seconds

Influence of Stacking Sequence Conditions on the Characteristics of Impact Collapse using CFRP Thin-Wall Structures (CFRP 박육부재의 적층조건이 충격압궤특성에 미치는 영향)

  • Kim, Yeong-Nam;Choe, Hyo-Seok;Cha, Cheon-Seok;Im, Gwang-Hui;Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2945-2951
    • /
    • 2000
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRP( Carbon Fiber Reinforced Plastics); tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine)and impact compression tests have been carried out using the vertival crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect energy absorption capability of CFRP tubes.

Impact Damage of CFRP Laminated Shells with the Curvature (곡률반경을 갖는 CFRP 적층쉘의 충격손상)

  • 황재중;이길성;김영남;나승우;심재기;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1341-1344
    • /
    • 2003
  • Studies on impact damage of composite laminate shells were fewer compared with those on impact behaviors to analyze time-load, displacement-load and impact energy - energy absorption. Up to date the studies were not enough to demonstrate suitability of their results because they were dependent on theories and numerical analyses. In particular, it is a well-known fact that there was a correlation between initial peak load and damage resistance of composite material flat plates imposed with low-speed impact, but studies on composite material shells with curvature were also very few. Actually structures such as wings or moving bodies of airplanes, motor cases and pressure containers of rockets are circular. And as low-speed impact load is imposed for optimal design of take-off and landing, and containers of airplanes, it is very important to analyze evaluation of behaviors and damaged areas. Therefore, in this paper to evaluate the impact characteristics of the CFRP laminate shell according to size of curvature quantitatively, it was to identify energy absorption and impact damage instruments according to change of impact speed.

  • PDF

Hygrothermal and Impact Damage Evaluation of CFRP Hat shaped sectional members with Stacking Angle Variation (적층각도 변화를 갖는 CFRP 모자형 단면부재의 열습 및 충격손상 평가)

  • Yang, Yong-Jun;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.782-789
    • /
    • 2010
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure member in automobiles. In this paper, we have studied to investigate collapse characteristics and moisture absorption movements of CFRP( carbon fiber reinforced plastics) structure members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for CFRP members which absorbed most of the collision energy. Also, variation of stacking angle is important to increase the energy absorption capability. The purpose of this study is to evaluate the strength reduction and moisture absorption behavior of CFRP hat shaped member. Therefore we have made a impact collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed. As a result, the effect of moisture absorption and impact loads of approximately 50% reduction in strength are shown.

Evaluation on Effect of Hole Machining for Application of M1.0 Subminiature Screw to CFRP Laminate Using FEM (FEM을 이용한 M1.0 초소형 나사 적용을 위한 CFRP 적층판의 홀 가공 영향평가)

  • Kim, Dae Young;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being "eco-friendly" and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.

Bending Characteristic Evaluations Circular Cross-section Carbon Composite and Hybrid Structural Material (원통단면 탄소복합재와 혼성 구조부재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Jeong, Jong-An;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2012
  • Carbon Fiber reinforced composite material can be designed for the optimized performances of structural member that have achieve appropriate mechanical properties with cross-sectional shape, fiber direction, stacking sequence and thickness. So there are needed extensive databases each optimal design of CFRP structural member by impact through the preparation of different shape, interface number, thickness and stacking angle. When pressure is applied to structural member, compression, bending and torsion is shown on the corresponding member. For the effective utilization of fiber reinforced composite material as main structural member, optimized design technology should be established to maximize mechanical properties for compression, bending and torsion. In this paper, CFRP prepreg sheet with different stacking angle is manufactured in CFRP and hybrid(Al+CFRP) with circular cross-section. Strength and stiffness is gotten respectively by flexure test. CFRP structure and hybrid structure can be compared with each other. The best design guideline can be analyzed by use of this study result.

Collapse Characteristics of CFRP hat Shaped Structural Member with Various Orientation Angle for a Use of Lightweight (경량화용 CFRP 모자형 구조부재의 적층각도 변화에 따른 압궤특성)

  • Hwang, Woochae;Yang, Yongjun;Yang, Inyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.865-870
    • /
    • 2012
  • CFRP of the advanced composite materials as structure materials for vehicles has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness compared with conventional materials. This study is to investigate the energy absorption characteristics and collapse mode of CFRP single and double hat shaped structural member under the axial static collapse test. The CFRP single and double hat shaped structural members stacked at different angles (${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member). The axial static collapse tests were carried out for each member. Collapse mode and energy absorption characteristics of the each member were analyzed.

Evaluation of Residual Strength in Aircraft Composite Under Impact Damage (충격손상을 받은 항공기용 복합재료의 잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-101
    • /
    • 2010
  • Composite materials have a higher specific strength and modulus than traditional metallic materials. Additionally, these materials offer new design flexibilities, corrosion and wear resistance, low thermal conductivity and increased fatigue life. These, however, are susceptible to impact damage due to their lack of through-thickness reinforcement and it causes large drops in the load-carrying capacity of a structure. Therefore, the impact damage behavior and subsequently load-carrying capacity of impacted composite materials deserve careful investigation. In this study, the residual strength and impact characteristics of plain-woven CFRP composites with impact damage are investigated under axial tensile test. Impact test was performed using drop weight impact tester. And residual strength behavior by impact was evaluated using the caprino model. Also we evaluated behavior of residual strength by change of mass and size of impactor. Examined change of residual strength by impact energy change through this research and consider impactor diameter in caprino model.

Evaluation of Material Properties about CFRP Composite Adapted for Wind Power Blade by using DIC Method (풍력발전기 블레이드 적용 CFRP 복합재료의 DIC 방법에 의한 재료특성치 평가)

  • Kang, J.W.;Kwon, O.H.;Kim, T.K.;Cho, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.17-23
    • /
    • 2010
  • In recent, the capacity of a commercial wind power has reached the range of 6 MW, with large plants being built world-wide on land and offshore. The rotor blades and the nacelle are exposed to external loads. Wind power system concepts are reviewed, and loadings by wind and gravity as important factors for the mechanical performance of the materials are considered. So, the mechanical properties of fiber composite materials are discussed. Plain woven fabrics Carbon Fiber Reinforced Plastics (CFRP) are advanced materials which combine the characteristics of the light weight, high stiffness, strength and chemical stability. However, Plain woven CFRP composite have a lot of problems, especially delamination, compared with common materials. Therefore, the aim of this work is to estimate the mechanical properties using the tensile specimen and to evaluate strain using the CNF specimen on plain woven CFRP composites. For the strain, we tried to apply to plain woven CFRP using Digital Image Correlation (DIC) method and strain gauge. DIC method can evaluate a strain change so it can predict a location of fracture.

Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model (피로누적손상을 이용한 직조 CFRP의 피로수명 예측)

  • Jang, Jae-Wook;Cho, Je-Hyoung;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

Barely Visible Impact Damage Detection Analyses of CFRP by Various NDE Techniques (다양한 비파괴 측정 방법에 의한 CFRP의 BVID 분석)

  • Lim, Hyunmin;Lee, Boyoung;Kim, Yeong K.
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • This study aims to detecting and analyzing the defects of damaged carbon fiber reinforced composites after impacts, particularly focusing on barely visible impact damages. The impact test was progressed by a drop-weight machine and applied to introduce simulated damages on laminated composites used in aircrafts. Various nondestructive testing (NDT) techniques were applied to identify the defects on the specimens with different levels of impact energies. Based on the measurements data, the levels of the barely visible impacts, and the applicability and effectiveness of the detection methods were discussed. Generally, the results demonstrated that their inner damages contained bigger footprints than those on the surfaces. However, when the damage energy was low, it was found that the inner damage size could be smaller than those appeared on the surfaces.