• Title/Summary/Keyword: 탄성 임계 하중

Search Result 43, Processing Time 0.025 seconds

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF

Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations (두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성)

  • 류봉조;임경빈;윤충섭;류두현
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1075-1082
    • /
    • 2000
  • The paper describes the vibration and stability of tapered beams on two-parameter elastic foundations. The two-parameter elastic foundations are constructed by distributed Winkler springs and a shearing layer as of ten used in soil models. The shear deformation and the rotatory inertia of a beam are taken into account. Governing equations are derived from energy expressions using Hamilton\`s principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration of a beam with an axial force are presented and compared when other solutions are available. Vibration frequencies, mode shapes, and critical forces of a tapered Timoshenko beam on elastic foundations under an axial force are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters and boundary conditions.

  • PDF

Critical Speed Analysis of the Liquid Rocket Turbopump (액체로켓 터보펌프의 임계 속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.92-99
    • /
    • 2005
  • Numerical analyses of critical speed and mass unbalance response are performed for a 30 ton thrust turbopump. The stiffness and damping of ball bearings and non-contact seals are quantified under aerodynamic and hydrodynamic loads induced by a fuel pump and turbine. Critical speed margin and tip displacements of the rotating parts are evaluated using a three-dimensional finite element method. The results are used to ensure the soundness of the rotordynamic design using an one-dimensional transfer matrix method. A further study shows that sufficient resonance margin may be assured via controlling the stiffness of the rotor support by employing an additional elastic ring to the bearing support.

Dynamic Stability Analysis of Nonconservative Systems for Variable Parameters using FE Method (유한요소기법을 이용한 비보존력이 작용하는 보-기둥 구조의 다양한 제변수 변화에 따른 동적 안정성 해석)

  • Lee Jun-Seok;Min Byoung-Cheol;Kim Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.351-363
    • /
    • 2004
  • Equation of motion of non conservative system considering mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory force's direction change and Winkler and Pasternak foundation stiffness matrix is derived. Also stability analysis due to the divergence and flutter loads is performed. And the influence of internal and external damping coefficient on flutter load is investigated applying the quadratic eigen problem solution. Additionally the influence of non-conservative force's direction parameter, internal and external damping and Winkler and Pasternak foundation on the critical load of Beck's and Leipholz's and Hauger's columns are investigated.

The Eigenvalues and Their Relationships for the Rectangular Frame (4각형 골조의 고유치와 고유치 간의 관계)

  • Lee, Soo-Gon;Kim, Soon-Cheol;Song, Chang-Young;Song, Sang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.139-150
    • /
    • 2005
  • Finite element method is applied to the determinations of the two eigenvalues(the elastic critical load and the natural frequence of lateral vibrations) of single story-3 equal bay rectangular frame. The analysis parameters are taper parameter ${\alpha}$ for column, and beam span to column height ratio, ${\beta}$ and second moment area ratio of beam to column, ${\Upsilon}$. Support condition at the column base and sway condition at the column top are also considered in the stability analysis of frame. The changes in the coefficient of eigenvalue are represented by algebraic function of analysis parameter. The coefficients estimated by the proposed algebraic function show good agreement with those determined by finite element method, which suggest the design aid role of the proposed function. By increasing the column axial forces step by step, the corresponding frequencies are also determined, which makes one examine or confirm the relationship suggested by other studies.

Flight Loads Analysis of Aircraft with High Aspect Ratio Flexible Wing by Using MSC/NASTRAN (MSC/NASTRAN을 활용한 고세장비 유연날개 항공기의 비행하중 해석)

  • Jang, Seyong;Kim, Sangyong;Kim, Youngyup;Cho, Changmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.657-664
    • /
    • 2013
  • The flight loads analysis was carried out on the aircraft with high aspect ratio flexible wings by using commercial software MSC/NASTRAN. The aerodynamic model for flight loads analysis was corrected, compared with results of the wind tunnel test. And in-house program was developed for pre and post works. In-house program enabling management of much data automatically consists of three modules: 'Construction of the mass distributed model', 'Selection of critical load cases', 'Generation of external loads for structural design'. By utilizing these techniques and programs, the procedure of flight loads analysis was established for effective development of an aircraft.

A Study on the Eigenvalue Problems of Partially Fixed End Members with Intermediate Elastic Supports (중간탄성지점이 있는 부분고정단 압축재의 고유치 문제에 관한 연구)

  • 김순철;문연준;이수곤
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.297-305
    • /
    • 1998
  • The finite element method is used for the study of the eigenvalue problems of partially fixed end beams with intermediate elastic supports. The elastic critical loads and natural frquencies of the beams are investigated by changing the numbers of elastic supports and their stiffness, and also by changing Kinney's fixity factor, $f_a$. The relationship between two eigenvalues is established by calculating the corresponding values of $(w/w_n)^2$ through changing $(P/P_{cr})$ values. The results of this study are as follows : (1) The elastic critical loads and natural frequencies of beams increase with increases in Kinney's fixity factor, $f_a$ and with the increased numbers of intermediate elastic supports. (2) The relationship between elastic critical loads and the natural frequencies of partially fixed end beams with intermediated elastic supports is $P/P_{cr} + (w/w_n)^2/ = 1$ without regard to Kinney's fixity factor, the stiffness of elastic supports, or the number of elastic supports.

  • PDF

The Determination of Critical Buckling Load Applied to Tapered Columns (일정변단면(一定變斷面) 장주(長柱)의 임계좌굴하중(臨界挫屈荷重)의 결정(決定))

  • Yu, Chul Soo;Sohn, Sung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • New formulas to determine the critical elastic buckling load of long tapered columns are given. This study is restricted to solid round or rectangular columns with fixed-free ends as often used in highway design. The exact solution of the differential equation of the deflection curve is expressed in terms of Bessel Function and the solution is numerically evaluated using Bisection method by computer. In the F.E.M analysis of columns under their own weight, the stability problem can be resulted in a eigen value problem of conservative system. Approximate solution by the F.E.M is evaluted numerically using Jacobi method and compared with exact solution of the prismatic column to increase the precision. In addition, critical buckling load of the tapered column for every shape factor and ratio of cross-sectional change (Diameter of bottom end/Diameter of upper end) was converted into a comparable expression to critical buckling load of the prismatic column.

  • PDF

Post-buckling Behaviour of Aluminium Alloys Rectangular Plate Considering the Initial Deflection Effect (초기 처짐 영향을 고려한 알루미늄 합금 사각형 판의 좌굴 후 거동)

  • Oh, Young-Cheol;Kang, Byoung-Mo;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.738-745
    • /
    • 2014
  • In this paper, It is performing to the elastic and elasto-plastic large deformation series analysis using a numerical method for the initial deflection effect of the aluminum alloy rectangular plate in the elasto-plastic loading area patch loading size. It is assumed a boundary condition to be a simply supported condition and consider the initial deflection amplitude, aspect ratio. It examined the critical elastic buckling load and post-buckling behaviour of aluminium alloy A6082-T6 rectangular plate. It used a commercial program for the elastic and elasto-plastic deformation series analysis. If the initial deflection amplitude is smaller, the in-plane rigidity with increasing to load is reduced from the start and occurs significantly more increasing the amplitude. More higher the aspect ratio, the initial yield strength is gradually decreased, and the plate thickness thicker and occurs larger than the thin walled plate a reduction ratio of the initial yield strength of the patch loading size as 0.5.

A Study on the Fatigue Crack Evaluation Method of Railway Bogie Frame (철도차량 대차를 피로균열 평가법 연구)

  • Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kim, Hyeong-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • In this study, fatigue crack growth rate of a cracked railway bogie frame under variable amplitude loading is predicted by applying linear elastic fracture mechanics. For this purpose, we find the critical points by reference surveying on cracked railway bogie frames. And we make an effective load history by synthesizing the dynamic load measured from the critical points of railway bogie frame during commercial line operation and the static load calculated from structural analysis. Crack growth analyses are performed at the 3 critical points under the commercial operation loading condition by assuming an initial crack size as 40 mm. and the results are compared with the experimental results from Japanese railway bogie frame crack growth case. From the analysis results, we find that around 500,000 km operating distance is necessary to bring crack growth from the initial crack to unstable crack. And it takes around 3.8 normal operating years. We conclude that it is enough time to detect the crack between normal maintenance period.