• Title/Summary/Keyword: 탄성파 방법

Search Result 398, Processing Time 0.029 seconds

Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis (탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구)

  • Jongpil Won;Jungkyun Shin;Jiho Ha;Hyunggu Jun
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.51-71
    • /
    • 2024
  • Seismic exploration is one of the widely used geophysical exploration methods with various applications such as resource development, geotechnical investigation, and subsurface monitoring. It is essential for interpreting the geological characteristics of subsurface by providing accurate images of stratum structures. Typically, geological features are interpreted by visually analyzing seismic sections. However, recently, quantitative analysis of seismic data has been extensively researched to accurately extract and interpret target geological features. Seismic attribute analysis can provide quantitative information for geological interpretation based on seismic data. Therefore, it is widely used in various fields, including the analysis of oil and gas reservoirs, investigation of fault and fracture, and assessment of shallow gas distributions. However, seismic attribute analysis is sensitive to noise within the seismic data, thus additional noise attenuation is required to enhance the accuracy of the seismic attribute analysis. In this study, four kinds of seismic noise attenuation methods are applied and compared to mitigate random noise of poststack seismic data and enhance the attribute analysis results. FX deconvolution, DSMF, Noise2Noise, and DnCNN are applied to the Youngil Bay high-resolution seismic data to remove seismic random noise. Energy, sweetness, and similarity attributes are calculated from noise-removed seismic data. Subsequently, the characteristics of each noise attenuation method, noise removal results, and seismic attribute analysis results are qualitatively and quantitatively analyzed. Based on the advantages and disadvantages of each noise attenuation method and the characteristics of each seismic attribute analysis, we propose a suitable noise attenuation method to improve the result of seismic attribute analysis.

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Comparison in Elastic Wave Propagation Velocity Evaluation Methods (탄성파의 매질 내 이동속도 산정방법 비교)

  • Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.31-37
    • /
    • 2014
  • In situ investigations and laboratory tests using elastic wave have become popular in geotechnical and geoenvironmental engineering. Propagation velocity of elastic wave is the key index to evaluate the ground characteristics. To evaluate this, various methods were used in both time domain and frequency domain. In time domain, the travel time can be found from the two points that have the same phase such as peaks or first rises. Cross-correlation can also be used in time domain by evaluating the time shift amount that makes the product of signals of input and received waveforms maximum. In frequency domain, wave propagation velocity can be evaluated by computing the phase differences between the source and received waves. In this study, wave propagation velocity evaluated by the methods listed above were compared. Bender element tests were conducted on the specimens cut from the undisturbed hand-cut block samples obtained from Block 37 excavation site in Chicago, IL, US. The evaluation methods in time domain provides relatively wide range of wave propagation velocities due to the noise in signals and the sampling frequency of data logger. Frequency domain approach provides relatively accurate wave propagation velocities and is irrelevant to the sampling frequency of data logger.

Static Correction of Land 3D Seismic Data (육상 3차원 탄성파 자료의 정보정)

  • Sheen Dong-Hoon;Park Jae-Woo;Ji Jun;Lee Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.145-149
    • /
    • 2002
  • The static correction, which is classified into refraction based static correction and reflection based residual static correction, removes distortions caused by irregularities of thickness or velocity in near-surface. Generally, refraction statics is a time consuming process because of high dependence on the interpreter's analysis. Therefore, for huge 3D seismic data, automatic static correction which minimizes the interpreter's analysis is required. In this research, we introduce an efficient method of refraction static correction for land 3D seismic survey.

Development of Automated Inversion Method for HWAW Method Using Genetic Algorithm (유전자 알고리즘을 이용한 HWAW 방법을 위한 자동화 역산 방법의 개발)

  • Park, Hyung-Choon;Hwang, Hea-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.55-63
    • /
    • 2012
  • The evaluation of shear modulus (or shear wave velocity) profile of the site is very important in various fields of geotechnical engineering and various surface wave methods have applied to determine the shear wave velocity profiles and showed good performance. Surface wave methods evaluate the dispersion curve in the field and determine the shear wave velocity profile through the inversion process. In this paper, the automated inversion process using the genetic algorithm is developed for HWAW method which is one of surface wave methods recently developed. The proposed method uses the error function based on the wavelength domain dispersion curve and can determine the reliable shear wave velocity profile not only in shallow depth but also in deep depth. To estimate the validity of the proposed method, numerical simulations and field test were performed and the proposed method was applied to determine the shear wave velocity profiles. Through the numerical simulations and field applications, the promising potential of the proposed method was verified.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.

Wave Interpretation of Forced Vibration of Finite Cylindrical Shells (탄성파를 이용한 유한 원통셸의 강제진동 해석)

  • 길현권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-89
    • /
    • 1999
  • The forced vibration of a finite cylindrical shell has been analyzed from an elastic wave viewpoint. The displacement vector is used to formulate the vibration field, that is regarded as a superposition of disturbances due to elastic waves propagating on the shell. The reflection matrix is also used in the formulation of the vibration field, that is easily derived in the present approach. It allows one to easily identify the wave conversion of elastic waves at the ends of the shell. The present approach is used to predict the vibration field of the cylindrical shell with free-free boundary conditions. The contribution of each type of elastic waves into the vibration field was identified, and the wave conversion at the ends of the shell was observed. Those results showed that the present approach can be effectively used to analyze the forced vibration of the cylindrical shell from an elastic wave viewpoint.

  • PDF

3D Seismic Data Processing Methodology using Public Domain Software System (공유 소프트웨어 시스템을 이용한 3차원 탄성파 자료처리 방법론)

  • Ji, Jun;Choi, Yun-Gyeong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2010
  • Recent trend in petroleum/gas exploration is an application of 3D seismic exploration technique. Unlike the conventional 2D seismic data processing, 3D seismic data processing is considered as the one which requires expensive commercial software systems and high performance computer. This paper propose a practical 3D seismic processing methodology on a personal computer using public domain software such as SU, SEPlib, and SEPlib3D. The applicability of the proposed method has been demonstrated by successful application to a well known realistic 3D synthetic data, SEG/EAGE 3D salt model data.

A Study on the Method of Building 3D GIS Database Using the Statistical Estimating Methods of Well Log for Balancing Seismic Data (탄성파 자료 보정용 검층 기록의 통계적 추정방법을 이용한 3차원 GIS DB 구축방법에 관한 연구)

  • Um, Jong-Seok
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.1 s.9
    • /
    • pp.39-47
    • /
    • 2003
  • The purpose of this paper is to present the method of acquiring 3D GIS data using the statistical estimating methods of Well Log for balancing Seismic data. We use the reflection coefficients of seismic data to get the parameters for the reservoir characterization and we balance the reflection coefficients of seismic data using well log to increase the confidence of the estimated result. Well logs are required to balance the reflection coefficients at the point where seismic data are acquired. In this research, we discuss the geostatistical estimation methods and we applied these methods to real data. Kriging gives high weights to the close well logs, which means estimated results are mainly affected by close well log. High value of cross variograms gave big difference on cokriging result comparing to kriging results and low value of cross variogram gave little differences.

  • PDF

Seismic attenuation from VSP data in methane hydrate-bearing sediments (메탄 하이드레이트 부존 퇴적층으로부터 획득한 수직탄성파 (VSP) 자료에서의 탄성파 진폭 감쇠)

  • Matsushima, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recent seismic surveys have shown that the presence of methane hydrate (MH) in sediments has significant influence on seismic attenuation. I have used vertical seismic profile (VSP) data from a Nankai Trough exploratory well, offshore Tokai in central Japan, to estimate compressional attenuation in MH-bearing sediments at seismic frequencies of 30-110 Hz. The use of two different measurement methods (spectral ratio and centroid frequency shift methods) provides an opportunity to validate the attenuation measurements. The sensitivity of attenuation analyses to different depth intervals, borehole irregularities, and different frequency ranges was also examined to validate the stability of attenuation estimation. I found no significant compressional attenuation in MH-bearing sediments at seismic frequencies. Macroscopically, the peaks of highest attenuation in the seismic frequency range correspond to low-saturation gas zones. In contrast, high compressional attenuation zones in the sonic frequency range (10-20 kHz) are associated with the presence of methane hydrates at the same well locations. Thus, this study demonstrated the frequency-dependence of attenuation in MH-bearing sediments; MH-bearing sediments cause attenuation in the sonic frequency range rather than the seismic frequency range As a possible reason why seismic frequencies in the 30-110 Hz range were not affected in MH-bearing sediments, I point out the effect of thin layering of MH-bearing zones.