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Abstract. Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical
constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by
reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic
data information is often decoupled into short and long wavelength components. The Jocal search method has difficulty
in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are
then changed from lower to higher bands (as in the ‘frequency-cascade scheme’) to estimate model elastic parameters.
Elastic parameters are inverted at each inversion step (‘simultancous mode’) with a starting model of linear P- and S-wave
velocity trends with depth. Elastic parameters are also derived by inversion in three other modes — using a P- and S-wave
velocity basis (‘¥ ¥s mode’); P-impedance and Poisson’s ratio basis (‘I; Poisson mode’); and P- and S-impedance (‘Ip Is
mode’). Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the
accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference
between the inversion results for the ¥» Vs mode and the I, Poisson mode. The same conclusion is expected for the I /5
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mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Key words: non-linear elastic wavefield inversion, frequency-cascade scheme, simultaneous mode, gas hydrate.

Introduction

An elastic model is described by three independent parameters,
such as the Lamé constants 4, u and mass density p. There
is a reliability gap in reflection seismology between P-wave
velocity information, associated with traveltimes, providing the
longer wavelength part of velocity structures, and reflectivity
information estimated from P-impedances at shorter wavelength
(Claerbout, 1985). Debski and Tarantola (1995) discussed the
information in possible elastic parameter sets for one-layer
models derived from the amplitudes of reflected waves. They
concluded that P-impedance, Poisson’s ratio, and mass density
constitutes the best tesolved parameter set when inverting
seismic amplitude variation with offset. They inverted a simple
velocity model, and did not discuss the problem of retrieving
a longer-wavelength velocity model, constrained by the arrival
times of reflected waves. I now examine cases of complex
velocity structures, to search for the best elastic parameter set in
a full wavelength inversion approach. The term ‘full wavelength
elastic inversion’ here means the attempt to retrieve the spatial
distribution of elastic parameters at all wavenumbers. It has been
a difficult task to estimate the longer wavelength distribution
of elastic parameters, compared with the shorter wavelength
distribution, using the elastic wavefield inversion approach (e.g.
Mora, 1988).

The purpose of the current research is to focus on the problem
to examine which set or combination of elastic parameters
shows the maximum information in non-linear elastic wavefield
inversion at all wavelengths. By maximum information, I mean
the most accurate result among the combination of elastic
parameters estimated by non-linear elastic wavefield inversion.
Several elastic models are constructed from a model based on the
gas hydrate and gas bearing logging data in the Nankai Trough
(Sakai, 2000, 2003). The computation accuracy in inversion is
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evaluated for several 1D and 2D models for each set of elastic
parameters under several density constraints and ambient noise
conditions. From this examination, it is concluded that there is no
advantage in selecting P-impedance, Poisson’s ratio, and density
over the P-wave velocity, S-wave velocity, and density set, in the
present full-wavelength inversion scheme. The same conclusion
is expected for the P-impedance, S-impedance, and density set,
although the number of inversion trials is smaller than for the
other modes in this study.

Elastic-wave velocity estimates for physical properties

Elastic-wave velocity is the basic physical quantity for solid
and fluid identification in exploration for hydrocarbons and
gas hydrates, and for monitoring of injected carbon dioxide in
geologic sequestration. Non-linear elastic wavefield inversion
is an iterative computational attempt to provide elastic-wave
velocity estimates for which synthetic traces most closely
resemble observed traces. Standard velocity analysis methods
based on image enhancing principles, such as stacking velocity
analysis and pre-stack migration, have limited resolution and
accuracy, and are usually restricted to estimation of P-wave
velocity. Amplitude variation with offset techniques assume
overburden elastic-wave velocity structure and have difficulties
with thin or curved layer estimates. The reliability of the analyses
in such cases remains dubious.

There are many examples that show the benefit of the
application of elastic-wave velocity to estimation of physical
properties. A first example is the seismic monitoring of carbon
dioxide injection. To mitigate the problem of global climate
change, the geological sequestration of carbon dioxide is being
tested by injecting carbon dioxide into saline aquifers and
depleted oil and gas fields (e.g. Arts et al., 2002). To observe
the extent and effect of the injected carbon dioxide, elastic-
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wave velocity can be utilised to estimate the saturation and
pore pressure of the carbon dioxide. The influence of the
effective pressure on the V7, versus Vp/Vs relation for water-
saturated clean sand sediment can be obtained from a rock
physics model (Dvorkin et al., 1999; Sakai, 1999), illustrated in
Figure 1.

A second example is the estimation of saturation of natural
gas hydrates. Gas hydrate is an ice-like clathrate compound,
stable under low temperature and high pressure conditions.
Naturally occurring gas hydrates in deep marine and permafrost
sediments control the global near-surface carbon budget and are
beginning to be explored as possible future fossil fuel resources.
Two opposing gas hydrate reservoir models have been proposed
from rock physics, tentatively called the compaction model
and the cementation model (Dvorkin et al., 1999; Sakai, 1999).
Research using reliable elastic-wave velocity data show that
the compaction model proves to be a universal model in both
permafrost and deep marine sediment (e.g. Sakai, 1999, 2000).
For the compaction model, the ¥, versus V3/Vs relation in case
of clean sand sediment is illustrated as a function of porosity (¢)
and gas hydrate saturation (Sh) in Figure 2.
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Fig. 2. Vp versus Vp/Vs relation for gas hydrate saturation estimate.

I have given two examples to show the importance of
elastic-wave velocity estimates. There have been studies of
acoustic or elastic wavefield inversion for estimation of fine
P-wave velocity structures. In analysis of real rock physics
data, several combinations of elastic parameters can be taken
for interpretation, such as Lamé constants, impedances,
Poisson’s ratio, and others. Each elastic parameter set
is invertible by mathematical operation and the sets are
mathematically identical. If the accuracy of inversion
results is independent of the choice of unknown elastic
parameter sets, the elastic wavefield inversion method will
provide a sound basis for subsequent interpretation of any
parameter sets.

In the current research, the elastic-wave velocity model for
inversion is constructed from logging data from a well in the
Narnkai Trough, offshore Japan, acquired in the 1999 MITI
drilling campaign (See Figure 3a for well location). The P-wave
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Fig. 3. (a) Location map of a MITI Nankai Trough well offshore Japan.
Well location is shown as a dot on the map. (b) Logging data from a well
in the Nankai Trough (Upper figure: P-wave velocity data, lower figure:
S-wave velocity). In the depth intervals of 1208-1210m, 12151217 m,
1219-1220m, and 1239-1242m, ¥p data were not observed due to high
attenuation of the first arrivals in Schlumberger’s DSI tool. Higher Vp and
Vs are interpreted as gas hydrate saturated zones such in the depth intervals of
1139-1145m, 1150-1155m, 1182-1190m, and 1203-1212m. Missing Vp
data were interpolated after wavefield inversion of VSP with gas saturation
estimates (after Sakai, 2000, 2003).
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(a) Schematic configurations of deep-towed seismic survey. (b) The Helmholtz transducer source

about to submerge at the stern of MV Kaiko Maru 7 for the first shot at the DTAGS 1997 survey in the

Nankai Trough.

velocity log data were missing over four depth intervals. Values
in these intervals were interpolated by estimating P-wave
velocity using elastic wavefield inversion of vertical seismic
profile (VSP) data (Sakai, 2000, 2003). At the same time, the
quantity of gas was also evaluated for log data estimates in
the missing zones. The estimated P-wave velocity distribution
is shown in Figure 3b. Elastic-wave velocity data, after filling
missing zones in this well, were resampled at 1-m spacing, which
is used as the key model in evaluating the inversion accuracy in
several elastic parameter sets. Velocity fluctuations in the key
model are used to construct five other models with different
statistics, evaluating the inversion accuracy over a wide variety
of elastic parameter fluctuations in depth.

Implementation

The non-dissipative elastic wavefield is governed by a linear
first-order coupled equation for particle velocity and stress in
Cartesian coordinates. Computed results are derived from a
two-dimensional finite-difference method with a second-order
accurate time and fourth-order accurate space formulation of the
staggered-grid scheme (Levander, 1988). In this study, source
and receivers are located in the water, and pressure is measured
at the receivers. The present inversion method can be applied
to any type of marine seismic survey such as ocean-bottom
seismometer, ocean-bottom cable, VSP, and deep-towed seismic
systems as well as conventional multi-channel seismic surveys.
As an example of such a deep-towed system, the Deep Towed
Acoustics/Geophysics System (DTAGS) of the USA’s Naval
Research Laboratory was used in a survey conducted offshore
Japan in 1997 for gas hydrate research (see Figure 4; Sakai,
1998).

The non-linear elastic wavefield inversion scheme now in use
is essentially based on the iterative search method of Tarantola
(1986), utilising the local gradients of the misfit function.
The misfit function is defined by the least-squared difference
functional (L, norm) between the observed data and the synthetic
data over receivers and shots at all time samples:

E:Zfdtc;' D 1S —

Sobsl2 + AmTC,;lAm (1)

shots receivers
§ E 2
E = fdt 'Ssyn - Sobs] (2)
shots receivers

where S, is the current synthetic wavefield and S, is the
observed seismic data, Am is the residual of the current model
and the superscript T indicates the transpose. The a priori data
covariance matrix C, is set to unity by normalising the data. The
model covariance matrix C,, term is used to smooth out changes
of the model parameters close to the minimum point. Assuming
nominally an infinite a priori variance in the model space here,
the C,, term is disregarded in the misfit function representation,

as the inversion turns out to be stable without damping. The
inversion is driven to minimise the misfit function in the model
space. The gradient direction of the steepest descent g, indicates
the direction of the most rapid change of the misfit function in the
neighbourhood of the starting model and is computed by back-
propagating the data residuals and correlating the result with the
forward-propagated wavefield (Lailly, 1983; Tarantola, 1984).
Gradients with respect to the Lamé constant set and density
are represented by velocity and stress tensors as follows. The
forward wavefield is denoted by the forward vector arrow, and
the backward wavefield is denoted by the backward vector arrow:
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If the model vector m, and step length ¢, at the n-th inversion
step is given, then the model vector is updated to reduce the misfit

function in a step-by-step line-search mode. Preconditioning
by a finite a priori model covariance matrix is combined with
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Fig. 5. Elastic-wave velocity model of Model 0 (thick curves) and the
starting model for inversion (dashed curves).
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Fig. 6. (a) Vp versus Vp/Vs cross-plots of all models (Models 0-5) and (b) Vp versus Vg cross-plot of all models.

the conjugate gradient formalism (Mora, 1987, 1988). The
gradients estimated with respect to the Lamé constant set are
then converted to the gradient set for the other elastic parameter
set. The model represented by each parameter set is updated at
each iteration step. Three elastic parameter sets are chosen to
examine the inversion accuracy:

- Density p, V3, and Vs (Vp Vs mode)

- Density p, P-impedance I, and Poisson’s ratio o (/» Poisson
mode)

- Density p, P-impedance I, and S-impedance /s (; /s mode)

These parameterisations are mathematically equivalent, but
it is not self-evident that they converge to an identical result in
non-linear wavefield inversion, as the minimum search tracks are
not identical among them. The gradient of the misfit function
is an element of 1-form or a dual of the model space. If G
represents the linear operator between linear spaces, its transpose
G" is a linear operator between dual spaces (e.g. Tarantola,
1987). Taking the first order approximation of the transformation
operator, the formulae for gradient transformation between these
parameter sets are: '

sV, 20Ve 0 0 84
sV =] —40vs  20vs 0|5 (4)
8p vi—av: V2 1) \sp

where § f/p, ) ffs, 8p and 8;1, 811, 80 are the gradients with respect
to elastic parameters V3, Vs, o and A, i, p respectively.
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where Sfp, 5}5, 8p are the gradients with respect to elastic
parameters I, o, p respectively.

s 25:/p 0 0 84
8l | = —4Is/p 2Is/p 0 Ly (6)
5p Qi -1/t -I;/p* 1 8p

where 8?1,, Bis, 8p are the gradients with respect to elastic
parameters I, I5, p respectively.

In order to examine the computational accuracy and
efficiency, the subspace method (Kennett and Williamson, 1987;
Crase et al., 1990) was applied to get the optimal step length
projected on each orthogonal subspace for elastic parameters.
This requires additional synthetic computations, including a
normal equation inversion. Currently a two-dimensional space
is in use:

k
My = m, + Za,{ v )]
j=t

Vo = _Cngn

where g, is the gradient vector of the misfit function with
respect to all parameters, and «/ is the step length for the
model change y/ with respect to the j-th subspace at the n-th
iteration step. C, is a preconditioning operator and could be
represented by the inverse Hessian matrix in the Newton method
(Tarantola, 1987). After numerical tests, a 2 x 2 diagonal matrix
for scaling the average amplitude of gradient directions was
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Fig. 7. Vp versus Vs cross-plot of Model 0. Brine data (open dots) are in
the neighbourhood of the initial trend drawn by starting model (grey dots).
Two gas hydrate zones (G/H) are illustrated by black dots. Two gas zones
are illustrated by squared dots. Some black dots are seen along the same
linear trend as the squared dots. These are in the interpolated data zone that
is interpreted to be a newly emerged BSR in the gas hydrate zone determined
by a relic BSR (double BSR hypothesis, e.g. Sakai, 2000).
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used for C,. The difference between the inversion results for the
two approaches was small in the case of the simultaneous mode,
although the subspace method for well correlated parameter sets
is ineffective in itself (Kennett and Williamson, 1987), and also
needed additional computational time. All computational results
found by the preconditioned conjugate gradient method were
utilised in the final error estimates.

Some computational aspects of inversion

The major problem of the inversion is how to estimate the
longer wavelength velocity model (Mora, 1987, 1988, 1989).
Some researchers tried to retrieve only the short wavelength
variations in elastic parameters (e.g. Crase et al., 1990). But
the idea of retrieving longer wavelengths was born in earlier
research into acoustic inversion, (see, for instance, Kolb et al.,
1986, or Pica et al., 1990). The local search method is likely
to converge to local minima close to the starting model and
not to the true model, if the perturbation of the starting
model from the true model is large. I heuristically applied a
method in my recent studies, which I have tentatively called
the frequency-cascade scheme, to evaluate the full wavelength
elastic-wave velocity of several two-dimensional geological
models (Sakai, 2002, 2003). The frequency-cascade scheme
was found to be effective in resolving this problem. If it is
realised in a multi-grid formulation, starting at the lowest
source frequency and increasing source frequency as the grid
size is reduced according to the stability criterion, there is
a computational benefit.

A
At < 0.606—— (8)

max

where At, A, and V,,,, are time grid, space grid, and maximum
Ve values. Cascaded frequencies can be determined from the
grid size series, for example by halving the spatial size and
doubling the frequency. In the current study, I changed the source
frequencies alone in actual synthetic computations as the data
volume was not so large. As an efficient searching method, Bunks
et al. (1995) had already applied the multi-grid method to the
acoustic inversion problem, which decomposes the problem into
scales in the same manner as the current method.

In an acoustic survey of a single reflector, cascaded
frequencies represented by single frequency sinusoidal sources
are estimated by a simple relation defined by the maximum
receiver offset and reflector depth in the frequency-domain
inversion approach (Sirgue and Pratt, 2001). It is shown that
the number of cascaded frequencies is reduced if the maximum
offset increases. This is an interesting approach that gives
a guide to frequency selection, but in elastic surveys over
complex structures, we need a trial and error approach for
optimal frequency selection (Sirgue and Pratt, 2001). Note that
computational efficiency is higher in acoustic inversion by the
frequency-domain approach than the current time—space domain
approach, although memory requirements are larger in the
frequency-domain approach. Elastic inversion by the frequency
domain approach has not been well implemented with real or
synthetic data.

In elastic wavefield inversion, elastic parameters such as V5
and Vs can be estimated by several approaches. In some cases,
for example, where P-wave logging data exists, the P-wave
velocity model structure may be well constrained in advance,
and the S-wave velocity alone is estimated by inversion with
fixed P-wave velocity, and vice versa, which I call constrained
mode. Alternating mode or relaxation mode means that first V;
is updated with Vs fixed, and subsequently Vs is updated with
Vs fixed, at each iteration step. Simultaneous mode means that

the P- and S-wave velocities are estimated simultaneously at
each iteration step of the inversion. Computational experiments
show that simultaneous mode is more efficient and accurate than
constrained mode or alternate mode (Sakai, 2002, 2003). There
are other strategies that combine several approaches, and so
might be called hybrid mode. One such example is to increase
the maximum receiver offset in inversion, i.e. estimating shorter
wavelength P-wave velocity or P-impedance variations by short-
offset inversion, and longer wavelength P- and S-wave velocity
or Poisson’s ratio variations by subsequent longer offset inversion
(e.g. Igel etal.,, 1996), tentatively called offset-based hybrid
mode. For efficiency and accuracy in inversion, a frequency-
cascade scheme with the simultaneous mode approach is better
than others, as well as being simple to implement regardless of
model complexity.

Another problem is how to construct starting models to
realise a full wavelength velocity model. Mora (1989) gave
insight into this problem for the case of acoustic inversion, by
demonstrating that the inversion is equivalent to simultaneously
doing migration and reflection tomography. He provided a recipe
to add a transmission or tomographic component in acoustic
reflection surveys by adding a deepest reflector below the
target zone, to generate transmission waves as a single pass
of the deep reflection. A starting model of linear P- and S-
wave velocity trends as a function of depth is chosen to realise
transmission or tomographic components in the inversion of the
elastic reflection survey in the same manner as the additional
deepest reflector. This corresponds to generating refracted or
diving waves for longer offsets. The longest wavelength velocity
model is represented by such a linear velocity trend as a function
of depth to stabilise the inversion for all wavelengths. Taking
such a simple starting model as a rule of thumb proves to
be very effective in combination with the frequency-cascade
scheme (Sakai, 2002, 2003). Another physical reason to take
a linear velocity trend as a function of depth is that we have
a good chance to estimate a proper Fp versus Vg relation in
advance, although this initial trend itself will be updated by
the inversion.

Numerical test
1D model building

In the numerical tests, layered elastic models are adopted for
computational efficiency. Model 0 is constructed from log data
from the gas hydrate well in the Nankai Trough where, in order to
reduce the number of grids for computational efficiency, water
depth is set to 110m. This consequently makes water-bottom
multiples prominent compared with the original geometry. To
incorporate possible elastic parameter fluctuations in depth
and consider the statistics of errors of the inversion in the
broad parameter domain, I constructed additional models in the
following manner. Taking perturbations § ¥, and 8 Vs from linear
P- and S-wave velocity trends as a function of depth, and initial
velocity trends V;; and Vs ;, new V5 and ¥ models are generated
as follows:

Model 0 Vi =8V, + Ve,  Vs=8Vs+ Vi,
Model 1 Vp = (SVS + VP,i VS = SVP + VS,i
Model2 Vo= —8Vs + Vor Vo= —8Ve + Vs,

Model 3 Vo =8Vs+ Vo, Vo= —8Vo+ Vs )
Model 4 Vp = (SVP + VP,i Vs = (SVP + VS,i
Model 5 Vp = (SVP =+ VP,i Vs = —8Vp =+ VS,i

Model 0 is shown in Figure 5 and other models are shown in the
Ve versus Vs and ¥V, versus V3p/V5 cross-plots in Figure 6.



6 Exploration Geophysics

A. Sakai

Initial velocity perturbations, defined by §¥,/V, and 8Vs/Vs,
of ¥V, and V5 for each model reach ~50%. Note that a cross-plot of
V» and V5 for Model 0, shown in Figure 7, depicts two obliquely

Model 0 (density assumpt:1)

intersecting trends, a brine- and a gas-bearing zone. Scattered
black filled dots surrounding these two trends in Figure 7 depict

gas hydrates.
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Fig. 8. Cross-plots of the relative errors Vp, Vs, and Vp/Vs in dVp/Vp versus d¥s/dVs and dVp/Vp versus d(Vp/Vp)/d(Vp/Vs)
for Vp Vs mode and Ip Poisson mode inversion with the first density update assumption for six models (only value ranges
between —0.1 and 0.1 are illustrated). Initial relative errors are shown by crosses, inverted relative errors for V'p Vs mode are

black dots, and those for Ip Poisson mode are black open circles.
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Density assumptions
In the current inversion method, density is assumed to be a
function of P-wave velocity according to the combined relations

the effects of density in the current inversion results, I assumed
three versions of the density update algorithm, and compared
the inversion accuracy in three modes.

of Gardner et al. (1974) and Hamilton (1978). Inversion of the

elastic parameters is done with the following schemes for density
updates. Density is not estimated by the inversion, so to know

Model 3 (density assumpt:1)

1. o' =p(V%) at the start of the i-th inversion step, where o’
and V', are density and P-wave velocity at the start of the
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i-th step. Density is then updated from the inverted ¥} for the
next step.

. p" = p(¥?) at the i-th inversion step where ¥} is the P-wave
velocity at the initial step, and o' is density at the i-th step.
Density is constant, equal to the initial value computed from
the initial P-wave velocity.

. p' =Q0p(V}) where Q is the quotient of updated and current
density values as a function of P-wave velocity. Q is chosen
from 0.8, 0.9, 1.1, 1.2, 1.3, and 2.0 as inversion cases.

In ¥; Vs mode and I; Poisson mode, density is updated by
all three density assumptions with updates of V; and Vs. In
I Iy mode, density is kept at the initial value and the elastic
parameters are inverted under the second assumption.

I use the following cases to compare the inversion accuracy
in the relative error of V5, Vs, and Vp/Vs:

- Models for the ¥; V5 mode and I, Poisson mode with the first
density update assumption,

- Models for the Vp V5 mode, I, Poisson mode, and I; Iy mode
with the second density update assumption;

- A model for the V; V5 mode and I, Poisson mode with the third
density update assumption.

To display the statistical error distribution, relative errors
are illustrated by histograms classed by Akaike’s Information
Criterion (AIC, see Appendix) in addition to cross-plots of
relative errors.
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Fig. 9. Histograms of the relative errors ¥p, Vs, and Vp/Vs of Vp Vs mode and Ip Poisson mode inversion of the first density assumption (black curves

and black dotted curves respectively) for six models, with the starting model shown by black dotted curves with markers. Histogram classes are determined
by AIC for the multinomial distribution of relative errors and are only illustrated between —0.1 and 0.1.
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Numerical results for 1D models

The grid size is kept at 1 m for all frequency steps, and the
number of model depth grids is 298. The maximum number
of receiver channels is 100 at a 10 m receiver interval, giving
a 1000 m maximum offset. The ratio of the deepest depth to
maximum offset is ~0.3. The source function is assumed to
be a Gaussian function, with a specified dominant frequency.
Source and receivers are deployed at 1.5 m depth below the free
surface. The frequency-cascade scheme is now designed with
the dominant frequencies 20, 40, and 80 Hz, with 40 iterations.

The relative error of ¥ and V5 is defined as (Viny — Vire ) Viruo
where V,, is the inverted velocity and V., is the given velocity
model for ¥, and V. Relative error of Vu/Vs is defined as
[P/ Vsins) = Veosrue! Ve arue)l / (Vo irue! Vs rue)> Where Vo ing, Vs ines

dVyp/V;, for Model 3

dVy/Vg for Model 3

Vb rues a0d Vs e are the inverted and given models for ¥} and
Vs.

Inversion results under the density update
assumptions

In Figure 8, the cross-plots of relative errors Ve, Vs and V3/ Vs
in dV3/V; versus dVs/Vs and dVe/ Vs versus d(Ve/Vo)/(Ve/Vs) of
the initial and inverted models are illustrated for comparison
between Vp Vs mode and I, Poisson mode for Models 0-5,
with inversion under the first density update assumption in
the value ranges between —0.1 and 0.1 (although the absolute
values of relative errors of the initial model are larger than
0.1). In Figure 9, the histograms of relative errors of the initial
and inverted models are illustrated in the value ranges between

d(Vp/Vo)(Vp/Vy) for Model 3
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Fig. 9. (continued)
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—0.1 and 0.1 for comparison between ¥} V5 mode and I, Poisson
mode for all Models, with inversion under the first density
assumption. Generally the accuracy of P-wave velocity inversion
is excellent over all models as represented by relative errors. The
inversion results do not show noticeable systematic differences
in the statistics of relative errors between Vp Vs mode and I,
Poisson mode for the models used. Relative errors of V3, Vs and
Vi/Vs are highly correlated or anti-correlated in Model 4 and
Model 5, but even in those cases the inversion was successfully
completed in high accuracies.

In Figure 10, the histograms of relative errors of the initial
and inverted models are illustrated in the value ranges between
—0.1 and 0.1 for comparison between ¥, Vs mode and I
Poisson mode, for all models with inversion under the second
density update assumption. Under this assumption, there are no

systematic differences in the statistics of relative errors between
V: Vs mode and I, Poisson mode. The relative errors in V5 and
Ve/Vs in Model O are slightly larger than in the other models.
Relative errors in depths of Model 0 do not have any correlation
with the depth discrepancy between starting and true models,
although this model has the largest Vs discrepancy, but there is
a discrepancy in the trend of longer wavelengths in depth.

The accuracy of ¥, remains comparable under both density
update assumptions, but the relative errors of ¥ and ¥5/Vs under
the second assumption are smaller than those under the first
assumption. This is because density is kept equal to the initial
density model during every inversion step.

In Figure 11, the inverted model and the true model are
illustrated in a cross-plot of V; versus Vg for ¥; Vs mode
as open circles and I, Poisson mode as black dots, for the
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Fig. 10. Histograms of the relative errors Vp, Vs, and Vp/Vs for Vp Vs mode and Jp Poisson mode inversion with the second density assumption (black

curves and black dotted curves respectively) for six models. Histogram classes are determined by AIC for the multinomial distribution of relative errors
and are only illustrated between —0.1 and 0.1.
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case of Model 0 with the third density update assumption with
quotient 2.0 (taken as an extreme case of the third density update
assumptions). True model data are illustrated as small open
circles. The gas-bearing and gas hydrate zone is well inverted for
both modes (refer to Figure 7) even though the starting model
has significant discrepancies from the true model. In Figure 12
are shown histograms of relative errors of ¥, Vs, and Vp/¥s
for ¥V, Vs mode and I, Poisson mode for quotients 0.8 and 2.0.
Note that there is no conspicuous difference between quotient
0.8 and 2.0 for these modes. This implies that the sensitivity
to density is small for our model geometry although the ratio
of the deepest depth to maximum offset is as small as 0.3. The
experiment of Dgbski and Tarantola (1995) was done with a
ratio of 0.44, which is larger than the current one. According to
the current inversion results, if there were density effects, they

dVp/V, for Model 3

dV/Vy for Model 3

would actually appear at larger offsets than the current ones.
This character can be regarded as a favourable point because the
wavefield inversion is robust in density values, therefore we do
not have to define accurate density relations. On the other hand, it
would be considered unfavourable as the inversion is insensitive
to the density values, meaning that we cannot easily estimate
accurate density values.

Effects of noise

In real world reflection surveys, noise is inevitable. To
examine such effects, Gaussian noise is added to the synthetic
reflection data at signal-to-noise levels of 200, 100, 50, and 25. In
Figure 13, synthetic shot records are shown for signal-to-noise
ratio (S/N) of 25 and noise-free conditions. In Figure 14, the
inverted models are displayed for comparison between Vp Vg
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Model 0 for density 3 with Q = 2.0 mode and I, Poisson mode, for S/N of 25, Model 0, and the
i T T ' ' first density update assumption. The accuracy of V3 is in the
1400 - o %o 4 acceptable range compared with noise-free cases for both V; Vs
°* o mode and 7, Poisson mode. The accuracy of V5 is worse in the
. ° depth range where velocity fluctuation is moderate than in the
o . .
1200 |- e . depth range of larger velocity fluctuation. As an extreme case of
¢ the S/N cases examined, Figure 15 shows marginal distributions
% v, @ °® of relative errors of ¥, Vs and V;/ V5 for all models with S/N of 25
E 2] o0 K @ . . .
E 1o0p gg)-a ey -@ o 8 under the first density assumption for ¥ Vs mode and 7, Poisson
> Lt O S ﬁgﬁiﬁ < mode. For other S/N values, there are no specific differences in
%%6 © P 2% relative errors between ¥, V5 mode and I, Poisson mode in the
800 - % 1 inversion for all six models.
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: : . . : is related to the maximum offset range. To examine its effect in
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inversion, the model was inverted after increasing the number of
Ve (m/s) receiver channels from 100 to 160 (1 to 1.6 km offset distance). In
Fig. 11. An example of an inversion result for Model 0 by Vp ¥s mode this case, the ratio of deepest depth to maximum offset is approx.

indicated by black open circles and /p Poisson mode indicated by black dots.
The true model is illustrated by small black open circles. Inversion is done
under the third density update assumption with quotient 2.0.

Density assumption: 3
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0.19. With this receiver geometry, deeper V; values are inverted
more accurately than the model with the originally defined
receiver geometry. In Figures 16 and 17, the inverted model

Density assumption: 3
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Fig. 12. Histograms of the relative errors Vp, Vg, and ¥Vp/Vs for Vp Vs mode inversion with the third density update assumption of quotient 0.8 and 2.0
(black and dotted curves respectively), and Ip Poisson mode inversion with the third density assumption of quotient 0.8 and 2.0 (thin black and dotted
curves respectively) for Model 0. Histogram classes are determined by AIC for the muitinomial distribution of relative errors.
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(a) Synthetic noise-free shot record. (b) Synthetic shot record for Model 0 with S/N = 25.
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Fig. 14. True and inverted velocity models for a synthetic shot record with S/N = 25, for Model 0 under
the first density update assumption in (a) the ¥p Vs mode and (b) the Ip Poisson mode (thick curves: true
Vp and Vs model, dotted curves: inverted ¥p and Vg model).
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Vp vs. Vg relation for Model 0O (long offset)
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Fig. 16. An example of inversion resuit for Model 0 of longer offset
receiver geometry (160 channels) for ¥p Vs mode indicated by black open
circles and /p Poisson mode indicated by black dots. The true model is
illustrated by small black open circles. Inversion is done under the first
density assumption.

with the true model of longer offset geometry are illustrated
in cross-plots of V; versus ¥ and histograms of relative errors
of Vp, Vs and Vp/Vs for V, Vs mode and I, Poisson mode in
the case of Model 0, as an example, under the first density
update assumption. Generally, if the maximum offset is larger
than that originally defined, the inversion accuracy of the elastic-
wave velocity at the deepest reflectors of the models would be
improved over the current estimates, though the similarity of
error distributions in elastic parameter sets will not be much
affected under the current geometry.

Numerical experiment for a 2D model

Next I examined a 2D model for three parameter sets in
the wavefield inversion scheme. It is an elastic-wave velocity
model of rock intrusion, with lower P-wave velocity in the
upper layer and higher P-wave velocity in the lower part in

dVp/V}, for Model 0 (long offset)

dVp/V}, for Model 0 (long offset)

the medium, and laterally invariant linear velocity trends with
depth. To simulate broad elastic parameter fluctuations in the
model, the rock intrusion has a depth-shifted P- and S-wave
velocity anomaly distribution illustrated in Figure 18 (Sakai,
2002). In Figure 19 are illustrated a 1D elastic-wave velocity
model profile at the centre of the rock intrusion. The grid
size is kept at 20 m for all frequency steps and the number of
model depth grids is 101. The maximum number of receiver
channels is 80, at a 100 m receiver interval, with the nearest
offset 300 m giving 8200 m maximum offset. The ratio of the
deepest depth of the anomaly to maximum offset is ~0.2. The
source function is assumed to be a Gaussian function with a
specified dominant frequency. Source and receivers are deployed
at 10 m depth below the free surface. Shot interval is 200 m.
The frequency-cascade scheme, coded for multi-shots with the
OpenMP parallel programming platform (www.openmp.org), is
now implemented with dominant frequencies 3, 6, and 12 Hz,
with 40 iterations respectively. The density is updated by the
first density assumption in the ¥, V5 mode and /; Poisson mode,
and by the second density assumption for the /; /s mode.

In Figure 20 are shown the histograms of relative errors of
Ve, Vs and Vp/Vs in Vp V5 mode, I, Poisson mode, and I I
mode respectively. Initial relative errors are overlaid in these
histograms. Relative errors in the inversion results are within
the absolute ranges of 0.05 in all modes. Relative error statistics
are almost identical among the three modes, and have the same
features as in the 1D models.

Discussion and conclusions

It is standard practice in reflection seismology to decouple the
longer and shorter wavelength reflection data, say, by traveltime
analysis and reflectivity analysis. I have examined information
for several parameter sets across a wavelength range that was not
covered in full by Dgbski and Tarantola (1995). Taking a different
approach for the discussion of the maximum information of
elastic parameter sets, the present study directly estimates the
full wavefield inversion accuracy in terms of the relative errors of
Ve, Vs, and Vp/ Vs in elastic parameter sets ¥y Vs mode, I Poisson
mode, and %, I; mode for several models. From the accuracy of
inversion of the full wavelength data for the several models used,
it can be concluded that there is no specific difference between
the ¥, V5 mode and the I, Poisson mode in terms of inversion
error distributions. The same conclusion is expected for the 7,
I mode, although the number of inversion trials are fewer than
other sets in the current study.

d(Vp/Vg)/(Vp! V) for Model O (long offset)
T T T T T

80 T

T T T

dVp/ Vp initial
Vp Vs mode long offset
Ip Poison mode long offset

Frequency
Frequency

> Poison mode long offset|

dVp/Vp initial
4 Vp Vs mode long offset
Ip Po1son mode long offset|

80 [

Frequency
5

---------- 20

-0.02 0015 -001 -0.0051 0 0005 001 0015 0.02
Range

-0.04 -003 -0.02 00!

0 001 002 003 004 -0.04 -0.02 4] 0.02 0.04
Range Range

Fig. 17. Histograms of the relative errors Vp, Vs, and Vp/Vg of part of the initial models (black dotted curves with markers), ¥p Vs mode inversion (black
curves), and Ip Poisson mode inversion (black dotted curves). Inversion is done under the first density assumption. Histogram classes are determined

by AIC for the multinomial distribution of relative errors.
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Fig. 19. 1D elastic-wave velocity model profile at the centre of the 2D rock

intrusion model.

Some researchers have declined to estimate the longer
wavelength velocity distributions (e.g. Crase et al., 1990), and
some have adopted the [ Poisson mode in advocating a
constrained mode inversion (e.g. Igel et al., 1996). Inversion
accuracy is dependent on the strategy of inversion and details
of the algorithm, as well as the formulation of the elastic
parameter set. In the present paper, a frequency-cascade scheme
is incorporated in simultaneous mode of the inversion scheme,
which leads to highly accurate inversion results for the whole
range of wavelengths, although it requires extensive computer
resources. Simultaneous mode inversion for all parameter sets,
which was applied only to ¥ ¥5 mode in Sakai (2002, 2003),
is confirmed to be stable and efficient in the /; Poisson mode
and the [ Is mode, although Igel etal. (1996) and others
have suggested that it is unstable in their /, Poisson mode
studies, so that they adopted an offset-based hybrid mode. It
would be convenient for accurate full wavelength inversion
if there were no preference among elastic parameter sets.
It was important to examine the sensitivity of the density
distribution in the current full wavelength inversion trials.
However, for the survey geometry and the models used here,
the sensitivity to density distributions proves to be very small.
More study, using much longer offset data, is needed to
further increase the accuracy of inversion of elastic parameters,
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Fig. 20. Histograms of relative errors of ¥p, Vs, and Vp/ Vs for Vp Vs mode,
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including inversion for three parameters simultaneously, and
to further discuss the maximum information in possible
parameter sets.
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Appendix: Histogram class determination by Akaike’s Information Criterion

In taking histograms, it is important to define classes in a statistically plausible manner. Under the assumption that the probability of
the relative errors in inverted data in each class is independent, a frequency of independent data trial takes a multinomial distribution.
Currently, a histogram model M{(a, 7, b) is assumed that in the total number of classes ¢ and frequencies n, with probability p(i) and
frequency n(i), the number of classes at the ends are a and b and central data between the ends are classified into classes of the
number of » as follows:

p(l) = p(2)=--- = pla) =6(1),
pla+(G -2+ =-=pla+(—-Dr+1)=060)
for j=2,....,(c—a—-b)r+1
plc—=b+1)=---=plc)=0((c—a—b)/r+2)

To estimate the most probable 8(j), for j=1,...,(c — a — b)/r+2, MAICE (minimum AIC) is used as the model selection
criterion. AIC(a, 7, b) approximates an expectation of unbiased average logarithmic likelihood and shows —2 multiplied by (maximum
logarithmic likelihood of the model — the number of free parameters of the model) (Akaike, 1974).

AlC(a,r, b) = -2 [(i n(i)) log (XH: %)

i=1 i=1

(c—a—-b)/r+1 a+(j—-)r a+(j-1r n([)
+ Z Z n(i) ] log Z g
j=2 i=a+(j-2)r+1

i=a+(j—-2)r+l
+ ( Z n(i)) log( Z %):l
+2((c—a—-b)/r+1) (A1)

http://www.publish.csiro.au/journals/eg



18 Exploration Geophysics A. Sakai

FERMBIERBIEA /13— 2 a VICHE T AREE /T A F OFEREIZ DN TOHIERT
EH S

E B RS LAV arOEIMORMEITIE, TRETETAT—FHDIVRET—FEZRAVT, MK
RIAZDEENTONTE T, LEL, BEEH L WITEMBICB W TERFROBMAT A F 2 HETLZ L ICEEES 75§EP)
D, AFEEZESEBEESICRELTHNVD LT HOMAHLE, AR TIE, EFROBMENRT A X EHET D20
PRIRIETY O B O IR 2 AR & IR BB WII R T TR O IR T A # 2§V J&L(ﬁ%—@%@fﬂﬁ#kﬁﬁ?‘éﬁ
&R ATz (Frequency-cascade scheme with simultaneous inversion mode) , & HIZARMBME/ VT 2 Z DAV 20EY B, &
FEOBREMTICLY, REREOBRE2ITo%, THAOLOMII, (1) FEEE, MEREBLIUOEE, Q) ks v—5
A, BT HBLOEE, RONCEG) A o E—F R, A - RBLVEETH S,

AWML T, BHHT—F @EEFT7) RHUBETALELE, BRD6 OO 1 RTETAT—F ROV 2RTAEAEA
ETFNT =2 ERANT, REOHELIFRBEEIEA "\ —Va U TEMBL, LLED3 DO T A X OMIZ OV TERZES
FILIZERECTERBE TH D Z 2R L, #oT, BEOHIEIC KL DEFHIRBIESOHEBBEEE A =V a Itk VR
HEE RS A ZEWET DBE, A 3= YaVIZAVLNDRIFAZOMBNTRTH->ThH, BRECHEESIEOND

LHERREND, Tihbb, IhbORBEMIZEMREM T X 7Ok, EEROFERBEEIEA > R—Ta i L AR
HARTAZEEEICENTY, BESAOBAPOITZIIRAETH D,

F—O—F : ERIEEREEA o N\—D a3y, BREEEREE, EIRBHRE AXNAFL—t

HIME BRI THER A WHOlM BRI M4 MEo| BE HEo| XM ofF
Akio Sakai

£ 2 uidy 35T gue 1&4 e ES FAse 2EFA ALY Ast AFEE Hoteed
ZEst gejojrt, o] =FolM e dAAxESY 2 d BN 5 RAZRE @A 2 A3ES A7 vEod
6 7HA #4ds &%

LM°

BEE AN }od‘:]' @35 RiAbg ARG ARE FF IDRAH A JESZ vhHoAh
AGAN e ol zr|Edo] A ZU2RY FHoxd Auie £ w¥HIE ESAsed AP adw
FAFALEL XL Yo o 52 dig9ex Td9 g4s B4ES FF3 3 HE"duh (frequency-cascade

A
scheme). B4 WFEL P ot S 9 £571 %o met MFoR WEE 7] 2d siFste] 74 JabdA oA
(simultaneous mode) AFTEATH P 3¢} S £ (*Vp Vs mode’), P I @I WA E ok H) (‘Ip Poisson mode’), P &} S I
YIAEA (Ip Is mode)} ZE M7tx] BEFo] wdu W4ES] oabs 98 doxith ZF @Adm Gab dAolA
AEH=S AIZER M skl 7R (update) Bt @0 2l A ZF WS AESA dite] =g Hoe A9 vp
Vs EE$} Ip Poisson 2= Alo]e] EriE IAF Aol %}19}‘3} Ip Is 2250 dEiAE S Ao} oiEn) ojy3t
AR A el A3 @5 g5 ik And x5 AlFsc

FR0{:0AY Bt H5F G4, AVY FAE o1 P, TA ZE, Aadoldols

E?ﬁigﬁﬁﬁ%(ﬁi) /\-] (=] ]}_ 7H %?r(‘)
T 140-0002 HIEHER )X H M) 2-2-20



