• Title/Summary/Keyword: 탄성파 모델링

Search Result 107, Processing Time 0.02 seconds

Extraction of Flow Velocity Information using Direct Wave and Application of Waveform Inversion Considering Flow Velocity (직접파를 이용한 배경매질 유속정보 도출과 유속을 고려한 파형역산의 적용)

  • Lee, Dawoon;Chung, Wookeen;Shin, Sungryul;Bae, Ho Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.4
    • /
    • pp.199-206
    • /
    • 2017
  • Field data obtained from marine exploration are influenced by various environmental factors such as wind, waves, tidal current and flow velocity of a background medium. Most environmental factors except for the flow velocity are properly corrected in the data processing stage. In this study, the wave equation modeling considering flow velocity is used to generate observation data, and numerical experiments using the observation data were conducted to analyze the effect of flow velocity on waveform inversion. The numerical examples include the results with unrealistic flow velocities. In addition, an algorithm is suggested to numerically extract flow velocity for waveform inversion. The proposed algorithm was applied to the modified Marmousi2 model to obtain the results depending on the flow velocity. The effect of flow velocity on updated physical properties was verified by comparing the inversion results without considering flow velocity and those obtained from the proposed algorithm.

Seismic Response Analysis of Dam-Reservoir System Using Transmitting Boundary (전달경계를 이용한 댐-호소 계의 지진응답해석)

  • 조정래
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.123-132
    • /
    • 1999
  • One of the major difficulties in the seismic analysis of a dam-reservoir system is the treatment of the energy radiation in the upstream direction of the reservoir. In the paper, a new transmitting boundary is presented that can model properly the radiation of energy in the far field direction of a semi-infinite reservoir with constant depth. In the newly developed method, effects of surface wave motion are taken into accounted and the reservoir-foundation interaction is approximately accounted for with an absorbing boundary condition. If a dam has vertical upstream face and the infinitely long reservoir maintains constant depth, then the proposed transmitting boundary can be directly coupled with the model of dam body. In present study, the dam body is assumed to behave elastically and modeled by finite element method. Seismic responses of a dam model are investigated using the newly developed transmitting boundary.

  • PDF

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

창녕군 증산리 지역 강변여과수 타당성 조사 및 시험 정호 설치

  • Kim Hyeong-Su;Won Lee-Jeong;Seok Hui-Jun;Park Cheol-Suk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.76-81
    • /
    • 2006
  • 창녕군 증산리 지역은 신규 취수원 확보 일환으로 강변여과 방식 취수 가능성이 한국수자원공사에 의해서 평가되고 있는 지역이다. 강변여과 방식 취수의 타당성 평가를 위해 현장 지질조사, 시추조사, 전기 비저항 탐사 및 고해상도 탄성파 탐사를 수행하였다. 또한 대상 연구지역에서의 개략적 취수 가능량 산정을 위해 모델링 평가가 수행되었으며, 개별 정호에 대한 양수량 산정을 위해 시험 정호를 설치하였다. 현장 시추 조사와 시료에 대한 입도 분석 결과, 연구 지역의 충적층 두께는 35m 전후이며, 주 대수층 구간은 지표하 $25{\sim}35m$인 것으로 추정되었다. 또한 주 대수층 구간의 수리전도도는 $10^{-2}cm/sec$ 이상으로 주로 모래섞인 자갈층으로 구성되어있는 것으로 평가되었다. 또한 전기비저항 조사 결과는 부분적으로 매우 낮은 비저항 분포 지층을 보여주고 있으며, 이는 주로 실트 및 점토로 된 지층이 부분적으로 퇴적되어 있음을 지시하며, 고해상도 탄성파 탐사 결과는 전반적으로 지하수위는 지표하부 5m 전후에 분포하고, 충적층의 하부 경계는 35 내지 45m인 것으로 해석되었다. 지하수 모델링을 통해, 취수 목표량인 180,000톤/일은 주대수층까지의 지하수위 강하 없이 확보 가능할 것으로 평가되었다. 또한 개별 정호의 산출 특성을 평가하기 위해 시험 정호를 설치하여, 실제 2,700톤/일 예비 양수 시험을 수행하였다. 예비 양수 시험 결과, 양수정에서의 수위 강하는 개략 10m, 양수정관측정에서는 약 0.3m의 수위강하만이 관찰되었으며, 양수 영향권이 수 십 m를 넘지 않을 것으로 판단되었다.서의 S97과 JBR의 세포감염 억제율은 3.85%와 3.63%로 나타났다. $textsc{k}$-casein, CU는 로타바이러스 S97과 JBR에 대해 농도 2000UM에서 97%이상의 억제효과를 나타냈으며, sialic acid는 억제효과가 거의 없었다. K-casein, GMP는 송아지뿐만 아니라 유아의 로타바이러스에 의한 설사를 억제할 수 있을 것으로 기대된다.을 향상하기 위해서는 이러한 부위에 대한 미생물 오염을 낮출 수 있는 세심한 현장 품질관리가 필요하다.en and adolescents, analysed by country, age group and gender. The paper discusses the places young consumers can turn to in trying to fulfil their growing consumer needs. It also examines how much money is at their disposal. It then concludes by considering the influence of "financial socialization" on how young people deal with money.nsumption visions based on the various perspectives, consumers are influenced in the apparel buying decision-making. Many subjects reported experiencing positive affect when imagining positive outcomes of produc

  • PDF

Magnetic anomaly in the southern part of the Yellow Sea (서해남부해역의 지자기 이상대 해석)

  • Kim, Sung-Bae;Choi, Sung-Ho;Suh, Man-Cheol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.85-92
    • /
    • 2008
  • National Oceanographic Research Institute is carrying out an oceanographic survey for the entire sea areas around Korean Peninsula annually starting with the East Sea from 1996 by establishing a national oceanographic basic map survey plan for the sea areas under the jurisdiction of Korea, so this paper used the oceanographic geomagnetism data measured at the southern area of the Yellow Sea using 'Hae Yang 2000' in 1999, aiming at clarifying the cause of geomagnetic abnormality zone during the course of treating and analyzing the geomagnetic data. For treatment of magnetic data, we obtained electromagnetic force values and geomagnetic abnormality values around the investigated sea area through a process of searching and removal of bad data, correction of sensor positions, correction of magnetic field effects around the hull, correction of diurnal variation, normal correction, correction of cross point errors, etc. The electromagnetic force distribution around the investigated sea area was $49000\;{\sim}\;51600\;nT$, which is judged to be within the normal electromagnetic force intensity distribution range around the Yellow Sea. The isodynamic lines are distributed in Northeast-Southwest direction, and electromagnetic force values are increasing toward the northwest. The result of comparing the magnetic abnormality around the sea area among $124^{\circ}$ 49' 48" E, $35^{\circ}$ 10' 48" N $\sim$ $125^{\circ}$ 7' 48" E, and $35^{\circ}$ 33' 00" N sections with the elastic wave cross section and the result of modeling coincide well with the underground geological structure clarified from the existing elastic wave survey cross section. Therefore, it is judged that the distribution of magnetic force abnormality generally shows the effect pursuant to the distribution of the sedimentary basins in the Tertiary period and the bedrocks in the Cretaceous period which are well developed in the bottom of the sea.

  • PDF

Hydroelastic Responses of Floating Structure by Modeling Dimensions (부유구조물의 모델링 차원에 따른 유탄성 응답)

  • Hong, Sanghyun;Hwang, Woongik;Lee, Jong Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • In this study, FE-BE direct coupling methods of 1D and 2D problems are considered for the pontoon-type floating structure and the difference of the modeling dimensions is investigated for the hydroelastic response. The modeling dimensions are defined as the 1D problem consisting 1D beam-2D fluid coupling and the 2D problem consisting 2D plate-3D fluid coupling with zero-draft assumption. For case studies, hydroelastic responses of the 1D Problem are compared to those of the 2D Problem for a wide range of aspect ratio and regular waves. It is shown that the effects of the elastic behavior are increased by decreasing the incident wavelength, whereas the effects of the rigid behavior are increased by increasing the incident wavelength. In 2D problem, the incident wave angle can be considered, and slightly more accurate results can be obtained, but the computational efficiency is lower. On the other hand, in 1D problem with plate-strip condition, the incident wave angle cannot be considered, but when the aspect ratio is large, the overall responses can be analyzed through a simplified model, and the computational efficiency can be improved.

A Performance Comparison between Coarray and MPI for Parallel Wave Propagation Modeling and Reverse-time Migration (코어레이와 MPI를 이용한 병렬 파동 전파 모델링과 거꿀 참반사 보정 성능 비교)

  • Ryu, Donghyun;Kim, Ahreum;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.131-135
    • /
    • 2016
  • Coarray is a parallel processing technique introduced in the Fortran 2008 standard. Coarray can implement parallel processing using simple syntax. In this research, we examined applicability of Coarray to seismic parallel processing by comparing performance of seismic data processing programs using Coarray and MPI. We compared calculation time using seismic wave propagation modeling and one to one communication time using domain decomposition technique. We also compared performance of parallel reverse-time migration programs using Coarray and MPI. Test results show that the computing speed of Coarray method is similar to that of MPI. On the other hand, MPI has superior communication speed to that of Coarray.

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Geophysical Evidence Indicating the Presence of Gas Hydrates in a Mud Volcano(MV420) in the Canadian Beaufort Sea (캐나다 보퍼트해 진흙화산(MV420) 내 가스하이드레이트 부존을 지시하는 지구물리학적 증거)

  • Yeonjin Choi;Young-Gyun Kim;Seung-Goo Kang;Young Keun Jin;Jong Kuk Hong;Wookeen Chung;Sung-Ryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.