• Title/Summary/Keyword: 탄성의

Search Result 7,510, Processing Time 0.027 seconds

Viscoelastic Bending, Vibration and Buckling Analysis of Laminated Composite Plates on Two-parameter Elastic Foundation (2개 매개변수를 갖는 탄성지반위에 놓인 복합재료 적층판의 점탄성적 휨, 진동 좌굴해석)

  • Han, SungCheon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.443-455
    • /
    • 2001
  • An energy method has been used for an elastic formulation of bending vibration and buckling analysis of laminated composite plates on two-parameter elastic foundations. A quasi-elastic method is used for the solution of viscoelastic analysis of the laminated composite plates. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported orthotropic plates on elastic foundations are compared with those of LUSAS program Numerical results of the viscoelastic bending vibration and buckling analysis are presented to show the effects of layup sequence number of layers material anisotropy and shear modulus of foundations.

  • PDF

Simulation of Valveless Pump Using Pumping Chamber Connected to Elastic Tube (탄성 튜브가 연결된 펌핑 챔버를 이용한 무밸브 펌프의 수치해석)

  • Shin, Soo Jai;Chang, Cheong Bong;Sung, Hyung Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • A valveless pump consisting of a pumping chamber with an elastic tube was simulated using an immersed boundary method. The interaction between the motion of the elastic tube and the pumping chamber generated a net flow toward the outlet through a full cycle of the pump. The net flow rate of the valveless pump was examined by varying the stretching coefficient, bending coefficient, and aspect ratio of the elastic tube. Photographs of the fluid velocity vectors and the wave motions of the elastic tube were examined over one cycle of the pump to gain a better understanding of the mechanism underlying the valveless pump. The relationship between the gap in the elastic tube and the average flow rate of the pump was analyzed.

Determination of Effective Buckling Length of Plane Frames using Elastic and Inelastic System Buckling Analysis (탄성 및 비탄성 좌굴 고유치해석을 이용한 강뼈대구조의 유효좌굴길이)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.169-179
    • /
    • 2005
  • An improved method for evaluating effective buckling lengths of beam-column members in plane frames is newly proposed based on system inelastic buckling analysis. To this end, the tangent stiffness matrix of be am-column elements is first calculated using stability functions and then the inelastic buckling analysis method is presented. The scheme for determining effective length of individual members is also addressed. Design examples and numerical results ?uc presented to show the validity of the proposed method.

Analysis of Elastic Constants of an Anisotropic Rock (이방성 암석의 탄성상수 분석연구)

  • 박철환
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2001
  • The total number of elastic constants of an anisotropic body is 9 and thus it is very difficult to measure these constants experimentally. The number of elastic constants can be reduced if a rock or rock mass is regarded as isotropic or transversely isotropic material. Since only 4 stress-strain relationships can be obtained, it is theoretically impossible to determine all 5 constants from a single uniaxial compression teat. Lekhnitskii overcame this problem by suggesting the fifth equation based on laboratory tests. But his equation is theoretically wrong and does not agree with experimental results. This paper describes the stress-strain relationships and the independent/dependent elastic constants of an anisotropic mass and suggests a testing mothed to determine 5 independent elastic constants for a transversely isotropic rock.

  • PDF

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

Buckling of Ferromagnetic Plates in Thermal and Magnetic Fields (자기장과 온도장으로 재하된 강자성 판의 좌굴)

  • 이종세;왕성철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.727-739
    • /
    • 2002
  • Based on a generalized variational principle for magneto-thermo-elasticity, a theoretical model is proposed to describe the coupled magneto-thermo-elastic interaction in soft ferromagnetic plates. Using the linearized theory of magneto-elasticity and perturbation technique, we analyze the magneto-elastic and magneto-thermo-elastic instability of simply supported ferromagnetic plates subjected to thermal and magnetic fields. A nonlinear finite element procedure is developed next to simulate the magneto-thermo-elastic behavior of a finite-size ferromagnetic plates. The effects of thermal and magnetic fields on the magneto-thermo-elastic bending and buckling is investigated in some detail.

Thermoelastic deformation and stress analysis of a FGM rectangular Plate (경사기능재료 사각 판의 열 탄성 변형과 응력 해석)

  • Kim,Gwi-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • A Green's function approach is adopted for analyzing the thermoelastic deformation and stress analysis of a plate made of functionally graded materials (FGMs). The solution to the 3-dimensional steady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green’Às function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical examples are carried out and effects of material properties on thermoelastic behaviors are discussed.

Determination of Elastic Modulus of Equal-Channel-Angular-Pressed Aluminum 5052 Alloy by Acoustic Material Signature (음향재료신호를 이용한 강소성변형된 알루미늄 5052 합금의 탄성계수 측정)

  • Kim, Chung-Seok;Park, Ik-Keun;Jhang, Kyoung-Young;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.146-154
    • /
    • 2010
  • The effects of severe plastic deformation, equal channel angular pressing, and annealing of Al 5052 alloy on elastic modulus have been studied. The AI 5052 alloy was plastically deformed by ECAP method after solution treatment, and then finally annealing heat treated. Elastic modulus was measured by conventional tensile and nano-indentation test, and also measured on the surface of the specimen using acoustic material signature of the acoustic microscope. The variation in the elastic modulus influenced by plastic deformation and heat treatment, inaccessible by the conventional techniques, was successfully measured by acoustic material signature and obtained the elastic modulus depending on crystal orientation at each grain.

Prediction of Equivalent Shear Modulus of Sandwich Panel Core (샌드위치 판넬 코어의 등가 전단 탄성계수 예측)

  • Lee, Sang-Youn;Yun, Su-Jin;Park, Dong-Chang;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.123-126
    • /
    • 2011
  • The Finite element modelling is carried to predict the equivalent shear modulus of the Egg-Box core. Homogeneous material H130-foam core is employed to verify the prediction method of equivalent shear modulus. It shows a good agreement between the results of FE calculation and the values available in the reference. As a result of the present work, the equivalent shear modulus of Egg-Box core at various temperatures can be obtained.

  • PDF

A Study on the Thermal Protection Performance of Elastomeric Insulators in Different Mixing Environments (탄성내열재 배합 환경에 따른 내열 성능 변화에 관한 연구)

  • Kim, Namjo;Seo, Sangkyu;Kang, Yoongoo;Go, Cheongah
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.108-115
    • /
    • 2019
  • The thermal response of elastomeric insulators used as protection against high-temperature and high-pressure combustion gases varies depending on their composition and thermal environment conditions. In this paper, the thermal response characteristics of elastomeric insulators in different mixing environments were compared. Tests to determine thermal protection performance were carried out using a thermal protection rubber evaluation motor(TPREM), combustion gas velocities of 20 m/s and 100 m/s were tested at a chamber pressure of 1,000 psig. The pressure time curve of the chamber, the temperature time curve of the internal materials, the residual thickness and the thermal destruction depth of the test specimens were obtained. The results showed that the thermal protection performance of elastomeric insulators in different mixing environments was similar.