• Title/Summary/Keyword: 탄성기반

Search Result 487, Processing Time 0.03 seconds

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

High-Resolution Seismic Reflection Profiling on Land with Hydrophones Employed in the Stream-Water Driven Trench (하천수유입과 하이드로폰을 이용한 육상 고분해능 탄성파반사법탐사)

  • Kim Ji-Soo;Han Su-Hyung;Kim Hak-Soo;Choi Won-Suk;Jung Chang-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.133-144
    • /
    • 2001
  • An effective seismic reflection technique for mapping the cavities and bedrock surface in carbonate rocks is described. The high resolution seismic reflection images were successfully registered by using the hydrophones employed in the stream-water driven trench, and were effectively focused by applying optimal data processing sequences. The strategy included enhancement of the signal interfered with the large-amplitude scattering noise, through pre- and post stack processing such as time-variant filtering, bad-trace editing, residual statics, velocity analysis, and careful muting after NMO (normal moveout) correction. The major reflections including the bedrock surface were mapped with the desired resolution and were correlated to the seismic crosshole tomographic data. Shallow major reflectors could be identified and analyzed on the AGC (auto gain control)-applied field records. Three subhorizontal layers were identified with their distinct velocities; overburden (<3000 m/s), sediments (3000-4000 m/s), limestone bedrock (>4000 m/s). Taking into account of no diffraction effects in the field records, gravel-rich overburdens and sediments are considered to be well sorted. Based on the images mapped consistently on the whole survey line and seismic velocity increasing with depth, this area probably lacks in sizable cavities (if any, no air-filled cavities).

  • PDF

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

Geophysical Investigation for Detecting a Bedrock and Geological Characterization in Natural Slope (자연사면에서 기반암 및 지질특성을 탐지하기 위한 지구물리 조사)

  • Park, Jong-Oh
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Geophysical surveys were conducted on an upper part of a natural slope located at Daejeon University. Electrical resistivity and seismic refraction measurements were carried out to obtain information on a weathered zone and internal structure at shallow depth, while AMT measurement a bed rock and geological structure at deep depth. With all the techniques applied, these results show a good correlation between electrical resistivity images and refraction velocity distributions for the characterization of a weathering and geological structure at depth. In particular, AMT survey seems to be the powerful tool for detecting a distribution of a bed rock with deep depth. The combined geophysical investigation produced a detailed image of a subsurface structure and improved well in the interpretation.

Development of a PC-based 3-D Seismic Visualization Software (PC 기반의 3차원 탄성파 자료 시각화 소프트웨어 개발 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • A software to visualize and analyse 3-D seismic data is developed using OpenGL, one of the most popular 3-D graphic library, under the PC and Windows platform. The software can visualize the data as volume and slices, whose color distribution is specified by a special dialog box that can pick a color in RGB or HSV format. The dialog box can also designate opacity values so that several 3-D objects can be displayed superimposed each other. Horizon picking is implemented very easily with this software thanks to the guided picking method. The picked points from a horizon will compose a set of points, mesh, and a surface, which can be viewed and analysed in three dimensions.

A Variational Numerical Method of Linear Elasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 선형탄성시스템의 변분동적수치해석법)

  • Kim, Jinkyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The extended framework of Hamilton's principle provides a new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics in terms of mixed formulation. Based upon such framework, a new variational numerical method of linear elasticity is provided for the classical single-degree-of-freedom dynamical systems. For the undamped system, the algorithm is symplectic with respect to the time step. For the damped system, it is shown to be accurate with good convergence characteristics.

Effects of f Electrons on the Elastic Properties of Rare Earth Compounds (f 전자가 희토류 화합물의 탄성 성질에 미치는 영향)

  • Nahm, Kyun;You, Sang-Koo;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.261-264
    • /
    • 2005
  • The elastic constants, C', of $Th_{3}P_4$-type structure compounds, $La_{3}S_4\;and\;Ce_{3}S_4$, have been analyzed on the basis of band Jahn-Teller mechanism. The distinct difference between two compounds lies in the fact that $Ce^{3+}$ ion has a f electron which produces magnetism. It is shown that the band Jahn-Teller effect is sensitively influenced by the energy splitting of f electronic bands by a cubic crystal field in $Ce_{3}S_4$, and f electrons suppress the elastic softening effect. The energy splitting value obtained from the calculation of elastic constants is found to agree well with the experimental value obtained from the magnetic susceptibility measurement.

A Comparative Study of LRFD Methods Using Linear Elastic and Nonlinear Inelastic Analysis (선형탄성해석 및 비선형비탄성해석을 이용한 LRFD 설계법의 비교 연구)

  • Jang, Eun Seok;Park, Jung Woong;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.633-642
    • /
    • 2007
  • Although the Load and Resistance Factor Design (LRFD) method is an advanced design approach, it does not accurately capture the interaction between individual members and structural system. A nonlinear inelastic analysis for the entire structure is required to solve this problem. According to many design codes of advanced countries, a nonlinear inelastic analysis can be applied to predict the structural behavior and strength reasonably. In this study, an LRFD design method using practical nonlinear inelastic analysis was proposed. Design examples using the proposed method waspresented, and the economical efficiency and adequacy of the proposed method was investigated by comparing the design results with that of the AISC-LRFD. It has been consequently demonstrated that the proposed method can reduce the construction cost through savings in steel.

Seat Tightness of Flexible Metal Seal of Butterfly Valve at Cryogenic Temperatures (초저온 버터플라이 밸브용 탄성 메탈실의 누설방지에 관한 연구)

  • Ahn, Jun-Tae;Lee, Kyung-Chul;Lee, Yong-Bum;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.643-649
    • /
    • 2011
  • For the development of butterfly valves used in liquefied natural gas (LNG) vessels, the seat tightness is one of the important factors to be taken into account in the valve-design process. An O-ring-type metal seal with a retaining ring showing good seat tightness at cryogenic temperatures has been widely used, despite the high manufacturing costs involved. As an alternative, a flexible solid metal seal offers not only sufficient tightness of the butterfly valve, meeting specification requirements, but also relatively low manufacturing costs. In this study, a design criterion to ensure the seat tightness of the butterfly valve using the flexible solid metal seal is proposed. The contact pressure can be calculated by the simulation of the frictional contact behavior between the surface of the metal seal and the valve disc. The geometry of the flexible solid metal seal is determined so that it satisfies the design criterion for sufficient seat tightness, and is verified by experiments according to BS6755 and BS6364.