• Title/Summary/Keyword: 타원분광계

Search Result 23, Processing Time 0.028 seconds

Development of a Microspot Spectroscopic Ellipsometer Compatible with Atomic Force Microscope (원자힘 현미경 융합형 마이크로스폿 분광타원계 개발)

  • In, Sun Ja;Lee, Min Ho;Cho, Sung Yong;Hong, Jun Seon;Baek, In Ho;Kwon, Yong Hyun;Yoon, Hee Kyu;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.201-209
    • /
    • 2022
  • The previously developed microspot spectroscopic ellipsometer (SE) is upgraded to a microspot SE compatible with the atomic force microscope (AFM). The focusing optical system of the previous microspot SE is optimized to incorporate an AFM head. In addition, the rotating compensator ellipsometer in polarizer-sample-compensator-analyzer configuration is adopted in order to minimize the negative effects caused by beam wobble. This research leads to the derivation of the expressions needed to get spectro-ellipsometric constants despite the fact that the employed rotating compensator is far from the ideal achromatic quarter-wave plate. The spot size of the developed microspot SE is less than 20 ㎛ while the AFM head is mounted. It operates in the wavelength range of 190-850 nm and has a measurement accuracy of δΔ ≤ 0.05° and δΨ ≤ 0.02°, respectively. Fast measurement of ≤3 s/sp is realized by precisely synchronizing the azimuthal angle of a rotating compensator with the spectrograph. The microspot SE integrated with an AFM is expected to be useful in characterizing the structure and optical properties of finely patterned samples.

Determination of optical constants and structures of ZnO:Ga films using spectroscopic ellipsometry (분광타원법을 이용한 ZnO:Ga 박막의 광학상수 및 두께 결정)

  • 신상균;김상준;김상열;유윤식
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.38-39
    • /
    • 2003
  • 전기적 저항이 낮은 투명 박막 물질은 현재 flat panel display, electroluminescent device, thin film transistor, solar cell 등 여러 분야에서 연구되고 있다. 그 중에서도 특히 ZnO:Ga는 현재 많이 쓰이는 ITO보다 화학적, 열적으로 안정한 상태를 보이는 투명 전도 산화막 물질로써 본 연구에서는 분광타원법을 이용하여 ZnO:Ga의 광학적 특성을 분석하였다. 본 연구를 위한 시료는 온도에 따른 ZnO:Ga/Sapphire 박막, $O_2$의 압력에 따른 ZnO:Ga/Sapphire 박막, Ga의 doping 농도에 따른 ZnO:Ga/Sapphire 박막으로 제작하였으며, 위상변조형 분광타원계(spectroscopic Phase Modulated Ellipsometer, Jobin-Yvon, UVISEL)를 사용하여 측정대역을 0.74 ~ 4.5 eV, 입사각을 70$^{\circ}$로 하여 측정하였다. (중략)

  • PDF

분광타원분석법을 이용한 InAs 유전율 함수의 온도의존성 연구

  • Kim, Tae-Jung;Yun, Jae-Jin;Gong, Tae-Ho;Jeong, Yong-U;Byeon, Jun-Seok;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.162-162
    • /
    • 2010
  • InAs 는 광전자 및 광통신 소자에 널리 이용되는 $In_xGa_{1-x}As_yP_{1-y}$ 화합물의 endpoint 로서, Heterojunction Field-Effect Transistors (HEMTs), Heterojunction Bipolar Transistor (HBT) 등에 중요하게 이용되고, 다양한 소자의 기판으로도 폭넓게 사용되는 물질이다. InAs 의 반도체 소자로의 응용을 위해서는 정확한 광 특성과 밴드갭 값들이 필수적이며, 분광타원편광분석법(ellipsometry) 을 이용한 상온 InAs 유전율 함수는 이미 정확히 알려져 있다. 그러나 상온에서는 $E_2$ 전이점 영역에서 여러 개의 밴드갭들이 중첩되어 있어, 밴드구조계산 등에 필수적인 InAs의 전이점을 정확히 정의하기 어렵다. 또한, 현재의 산업계에서 중요하게 여겨지는 실시간 모니터링을 위해서는 증착온도에서의 유전율 함수 데이터베이스가 필수적이다. 이와 같은 필요성에 의해, 22 K - 700 K 의 온도범위에서 InAs 의 유전율 함수와 밴드갭 에너지에 대한 연구를 수행하였다. InAs bulk 기판을 methanol, acetone, DI water 등으로 세척 한 뒤, 저온 cryostat 에 부착하였다. 분광타원분석법은 표면의 오염에 매우 민감하기 때문에, 저온에서의 응결 방지를 위해 고 진공도를 유지하며, 액체 헬륨으로 냉각하였다. 0.7 - 6.5 eV 에너지 영역에서 측정이 가능한 분광타원편광분석기로 측정한 결과, 온도가 증가함에 따라 열팽창과 phonon-electron 상호작용효과의 증가에 의해, 밴드갭 에너지 값의 적색 천이와 밴드갭들의 중첩을 관찰 할 수 있었다. 정확한 밴드갭 에너지 값의 분석을 위하여 2계 미분을 통한 표준 밴드갭 해석법을 적용하였으며, 22 K 의 저온에서는 $E_2$ 전이점 영역에서 중첩된 여러 개의 밴드갭들을 분리 할 수 있었다. 또한 고온에서의 연구를 통해, 실시간 분석을 위한 InAs 유전함수의 데이터베이스를 확립하였다. 본 연구의 결과는 InAs 를 기반으로 한 광전자 소자의 개발 및 적용분야와 밴드갭 엔지니어링 분야에 많은 도움이 될 것으로 예상한다.

  • PDF

Measurement and Analysis of the Dynamics of Peptide-Antibody Interactions Using an Ellipsometric Biosensor Based on a Silicon Substrate (실리콘 기판을 사용한 바이오센서와 회전 타원분광계를 이용한 펩타이드-항체 접합의 동특성 측정과 분석)

  • Lee, Geun-Jae;Cho, Hyun Mo;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • We precisely measured and analyzed the dynamics of peptide-antibody interactions, using an ellipsometric biosensor based on a silicon substrate. To reduce the signal error due to the imperfect flatness of the substrate for extremely low concentrations of peptide, we fabricated the biosensor with a silicon substrate coated with Dextran SAM, instead of a glass prism coated with a thin metallic thin film. At an injection speed of $100{\mu}l/min$ of buffer liquid, we detected the dynamics of antibody-Dextran SAM or peptide-antibody fixed on biosensor, respectively. We detected the dynamics of antibody-Dextran SAM interactions down to a low concentration of 5 ng per liter, and we precisely measured the dynamics of association and dissociation of peptide and antibody down to 100 nM of peptide. We obtained the rate constants for association and dissociation from fitting the data by using deduced dynamical equation. As a result, we obtained an equilibrium constant for dissociation of 97 nM of peptide-antibody complex, which belongs to Class I.

Optical Property of Super-RENS Optical Recording Ge2Sb2Te5 Thin Films at High Temperature (초해상 광기록 Ge2Sb2Te5 박막의 고온광물성 연구)

  • Li, Xue-Zhe;Choi, Joong-Kyu;Lee, Jae-Heun;Byun, Young-Sup;Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Soo-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.

Design of a Free-form Mueller Matrix Ellipsometer with Imperfect Compensators (불완전한 보정기를 적용한 자유형 뮬러행렬타원계의 설계)

  • Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.2
    • /
    • pp.59-66
    • /
    • 2022
  • A free-form Mueller matrix ellipsometer (MME) based on independent control of the azimuthal angle of each polarizing element is introduced. The azimuthal angles of the polarizer and the matching compensator which generate the optimum Stokes vectors of an incident beam are investigated for the polarization state generator, where the spectral responses of the retardation angle and transmittance ratio of a nonideal compensator are taken into account. Similarly, the azimuthal angles of the analyzer and the corresponding compensator are investigated for the polarization-state detector, to unambiguously determine the Stokes vector of the outcoming beam from the sample, and explicit expressions for the Stokes elements are derived. Since the suggested technique enables one to utilize a nonideal quarter-wave plate as the compensator for an MME, it will contribute to the construction and application of a Mueller matrix spectroscopic ellipsometer (MMSE) operating over a wide spectral range from deep ultra-violet to near infrared.

Optical Properties of Sputtered Ta2O5 Thin Films Using Spectroscopic Ellipsometty (분광타원법을 이용한 스퍼터된 Ta2O5 박막의 광학적 특성)

  • Kim, Sun-Hee;Lee, Eui-Hyun;Jung, In-Woo;Hyun, Jang-Hoon;Lee, Sung-Young;Kang, Man-Il;Ryu, Ji-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • $Ta_{2}O_{5}$ thin films were deposited by RF magnetron sputtering method under various RF power, substrates and oxygen partial pressure. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 310$\sim$1239 nm. Also, transmittance spectra of the films were measured by UV -Vis spectrophotometer in the range of 300$\sim$1000 nm. From these data, thickness of $Ta_{2}O_{5}$ and surface layer were analyzed and changes of magnitude and shape of dispersion of optical constants according to fabricated conditions were measured. Also, to evaluate thickness and optical constants data analyzed by Tauc-Lorentz dispersion formula, the measured and analyzed transmittance spectra were compared. In result of the comparison, two spectra were in good agreement each other. Accordingly, it indicates that our ellipsometric analysis is valid.

Investigation of Growth Properties of Sputtered V2O5 Thin Films Using Spectroscopic Ellipsometry (분광타원법을 이용한 스퍼터된 V2O5 박막의 성장특성 조사)

  • Lim, Sung-Taek;Kang, Man-Il;Lee, Kyu-Sung;Kim, Yong-Gi;Ryu, Ji-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.134-140
    • /
    • 2007
  • Optical structure of $V_{2}O_{5}$ thin films were analyzed and confirmed, the films were deposited in oxygen partial pressure 0% and 10% by RF magnetron sputtering system. Measurements of the elliptic constants were made in the range of $0.75{\sim}4.0\;eV$ by using phase modulated spectroscopic ellipsometer. The elliptic constants of the thin films were analyze by Double Amorphous dispersion relation. The calculated n, k spectra of $V_{2}O_{5}$ layer were obtained over the range of $0.75{\sim}4.0\;eV$ photon energy. SEM and XRD measurements were also made to validate the ellipsometric analysis and they give good agreement with the structural properties of the films. It was found that optical structure of the $V_{2}O_{5}$ layer has a 3 phase(roughness/film/substrate) and optical absorption properties are greatly depend on the partial pressure of the oxygen.

Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio (산소분압비에 따른 ZnO 박막의 성장특성)

  • Kang, Man-Il;Kim, Moon-Won;Kim, Yong-Gi;Ryu, Ji-Wook;Jang, Han-O
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.204-210
    • /
    • 2008
  • ZnO thin films were grown on a glass by RF sputtering system with RF power 100W and oxygen partial pressure of $0%{/sim}30%$. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 1.5 to 3.8eV. Also, scanning electron microscope(SEM) was used for the analysis of surface crystallization condition. From elliptic constants spectra, optical constants, thickness and roughness of ZnO films were evaluated. Total thickness of ZnO films obtained by ellipsometry showed good agreement with SEM data. It was found that the grain size of the films were getting smaller with increasing oxygen partial pressure. Band-gap of ZnO films increase with the oxygen partial pressure. These findings clearly indicate that optical properties of ZnO films are strongly dependent on the oxygen partial pressure. It could be explained that increasing the oxygen partial pressure induced high crystalline imperfection in the ZnO films.