DOI QR코드

DOI QR Code

Measurement and Analysis of the Dynamics of Peptide-Antibody Interactions Using an Ellipsometric Biosensor Based on a Silicon Substrate

실리콘 기판을 사용한 바이오센서와 회전 타원분광계를 이용한 펩타이드-항체 접합의 동특성 측정과 분석

  • Lee, Geun-Jae (Department of Photonics and Sensor, Hannam University) ;
  • Cho, Hyun Mo (Center for Nanometrology, Korea Research Institute of Standards and Science) ;
  • Jo, Jae Heung (Department of Photonics and Sensor, Hannam University)
  • 이근재 (한남대학교 공과대학교 광.센서공학과) ;
  • 조현모 (한국표준과학연구원 산업측정표준본부 나노측정센터) ;
  • 조재흥 (한남대학교 공과대학교 광.센서공학과)
  • Received : 2016.09.13
  • Accepted : 2016.12.02
  • Published : 2017.02.25

Abstract

We precisely measured and analyzed the dynamics of peptide-antibody interactions, using an ellipsometric biosensor based on a silicon substrate. To reduce the signal error due to the imperfect flatness of the substrate for extremely low concentrations of peptide, we fabricated the biosensor with a silicon substrate coated with Dextran SAM, instead of a glass prism coated with a thin metallic thin film. At an injection speed of $100{\mu}l/min$ of buffer liquid, we detected the dynamics of antibody-Dextran SAM or peptide-antibody fixed on biosensor, respectively. We detected the dynamics of antibody-Dextran SAM interactions down to a low concentration of 5 ng per liter, and we precisely measured the dynamics of association and dissociation of peptide and antibody down to 100 nM of peptide. We obtained the rate constants for association and dissociation from fitting the data by using deduced dynamical equation. As a result, we obtained an equilibrium constant for dissociation of 97 nM of peptide-antibody complex, which belongs to Class I.

실리콘 기판으로 만든 바이오센서에서 펩타이드-항체의 접합 동특성을 회전 타원분광계로 정밀하게 측정하고 분석하였다. 극도로 낮은 몰농도의 펩타이드를 측정할 때, 시료가 놓이는 바이오센서의 표면의 불완전한 편평도와 완충용액 굴절률 변화로 인한 측정오차를 줄이기 위하여 금속박막의 유리 프리즘 대신에 실리콘 기판 위에 덱스트란 SAM을 직접 적층하여 바이오센서를 만들었다. $100{\mu}l/min$의 완충용액 주입속도에서 바이오센서에 올려진 항체 및 펩타이드의 접합특성을 각각 측정하였다. 리터당 5 ng의 낮은 항체농도에서도 항체-덱스트란 SAM 사이의 동특성을 쉽게 측정할 수 있었다. 또한 100 nM까지의 펩타이드에 대한 미세한 흡착 및 해리 특성을 정밀하게 측정할 수 있었으며, 접합 동특성 식에 이 실험결과를 피팅하여 흡착계수와 해리계수를 구할 수 있었다. 이 결과로부터 펩타이드의 평형상태의 해리상수인 $K_D$는 97 nM이었고, 이 수치는 Class I에 속함을 알 수 있었다.

Keywords

References

  1. Hyun Mo Cho, Yong Jai Cho, and Won Chegal, "Nano-bio convergence technologies using ellipsometry," The Korean Society of Mechanical Engineers Journal of the KSME, 44, 57-61 (2004).
  2. Su Jin Koo, "Surface Plasmon Resonance," The Korean Society For Biotechnology And Bioengineering BT NEWS, 11, 24-34 (2004).
  3. Nico J. Mol, Marcel, and J. E. Fischer, "Surface plasmon resonance," Humana Press (2010).
  4. Gyeong Sik Ok and Gwang rak Go, "Analysis of interfacial phenomena in nano-level using surface plasmon resonance," Polymer Science and Technology, 13, 825-832 (2002).
  5. A. V. Nabok, A. Tsargorodskaya, A. K. Hassan, and N. F. Starodub, "Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins," Applied Surface Science, 246, 381-386 (2005). https://doi.org/10.1016/j.apsusc.2004.11.084
  6. H. J. Kang, Y. J. Kang, Y.-M. Lee, H.-H. Shin, S. J. Chung, and S. Y. Kang, "Developing an antibody-binding protein cage as a molecular recognition drug modular nanoplatform," Biomaterials, 33, 5423-5430 (2012). https://doi.org/10.1016/j.biomaterials.2012.03.055
  7. M. S. Diware, H. M. Cho, W. Chegal, Y. J. Cho, J. H. Jo, S. W. O, S. H. Paek, Y. H. Yoon, and D. Kim, "Solution immersed silicon (SIS)-based biosensors: a new approach in biosensing," Analyst, 140, 706-709 (2015). https://doi.org/10.1039/C4AN01584C
  8. M. A. Azzam and N. M. Bashara, "Ellipsometry and polarized light," North-Holland (1997).
  9. H. G. Tompkins, "A user's guide to ellipsometry," Academic, (1993).
  10. H. Fujiwara, "Sepectroscopic ellipsometry principle and applications," John Wiley & Sons (2007).
  11. I. S. An, "Ellipsometry," Hanyang University Press (2007)
  12. Daniel J. O'Shannessy, Michael Brigham-Burke, K. Karl Soneson, Preston Hensley, Ian Brooks, "Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: Use of nonlinear least squares analysis methods," Analytical Biochemistry, 212, 457-468 (1993). https://doi.org/10.1006/abio.1993.1355
  13. K. Alfthan, "Surface plasmon resonance biosensors as a tool in antibody engineering," biosensors & bioelectronics, 13, 653-663 (1998). https://doi.org/10.1016/S0956-5663(98)00020-7
  14. C.-Y. Wu and L. Z. Benet, "Predicting Drug Disposition via Application of BCS Transport, Absorption, Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System," Pharmaceutical Research, 22, 11-23 (2005). https://doi.org/10.1007/s11095-004-9004-4
  15. H. K. Sah, K. S. Lee, and M. S. Baek, "Implementation of biopharmaceutics classification system concepts in developing dissolution tests," J. Kor. Pharm. Sci., 36, 161-167 (2006).