Browse > Article
http://dx.doi.org/10.3807/KJOP.2022.33.2.059

Design of a Free-form Mueller Matrix Ellipsometer with Imperfect Compensators  

Kim, Sang Youl (Ellipso Technology Co. Ltd.)
Publication Information
Korean Journal of Optics and Photonics / v.33, no.2, 2022 , pp. 59-66 More about this Journal
Abstract
A free-form Mueller matrix ellipsometer (MME) based on independent control of the azimuthal angle of each polarizing element is introduced. The azimuthal angles of the polarizer and the matching compensator which generate the optimum Stokes vectors of an incident beam are investigated for the polarization state generator, where the spectral responses of the retardation angle and transmittance ratio of a nonideal compensator are taken into account. Similarly, the azimuthal angles of the analyzer and the corresponding compensator are investigated for the polarization-state detector, to unambiguously determine the Stokes vector of the outcoming beam from the sample, and explicit expressions for the Stokes elements are derived. Since the suggested technique enables one to utilize a nonideal quarter-wave plate as the compensator for an MME, it will contribute to the construction and application of a Mueller matrix spectroscopic ellipsometer (MMSE) operating over a wide spectral range from deep ultra-violet to near infrared.
Keywords
Imperfect compensator; Mueller matrix ellipsometer; Wide spectral range;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Tokyo, Japan, 2007).
2 S. Y. Kim and K. Vedam "Proper choice of the error function in modelling spectroellipsometric data," Appl. Opt. 25, 2013-2021 (1986).   DOI
3 Horiba, "Spectroscopic Ellipsometry," https://www.horiba.com/en_en/products/by-technique/material-characterization/ spectroscopic-ellipsometry/ (Accessed date: Dec. 24, 2021).
4 K. Vedam, P. J. McMarr, and J. Narayan, "Nondestructive depth profiling by spectroscopic ellipsometry," Appl. Phys. Lett. 47, 339-341 (1985).   DOI
5 S. Y. Kim and K. Vedam, "Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry," Thin Solid Films 166, 325-334 (1988).   DOI
6 S. Liu, X. Chen, and C. Zhang, "Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology," Thin Solid Films 584, 176-185 (2015).   DOI
7 X. Chen, S. Liu, H. Gu, and C. Zhang, "Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter," Thin Solid Films 571, 653-659 (2014).   DOI
8 R. M. A. Azzam, "Mueller-matrix ellipsometry: a review," Proc. SPIE 3121, 396-405 (1997).
9 R. W. Collins and J. Koh, "Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films," J. Opt. Soc. Am. A 16, 1997-2006 (1999).   DOI
10 J. Li, B. Ramanujam, and R. W. Collins, "Dual rotating-compensator ellipsometer: theory and simulations," Thin Solid Films 519, 2725-2729 (2011).   DOI
11 C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, "Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle," Thin Solid Films 455-456, 14-23 (2004).   DOI
12 A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and M. Gioti, "Mueller matrix spectroscopic ellipsometry: formulation and application," Thin Solid Films 455-456, 43-49 (2004).   DOI
13 S. Zhang, H. Jiang, H. Gu, X. Chen, and S. Liu, "High-speed Mueller matrix ellipsometer with microsecond temporal resolution," Opt. Express 28, 10873-10887 (2020).   DOI
14 K. S. Reddy, V. M. Kumar, S. Chandralingam, P. R. Rao, and P. V. K. Rao, "Optical signature of wood sample-Mueller matrix imaging polarimetry," ARPN J. Eng. Appl. Sci. 5, 34-38 (2010).
15 P. Kolejak, D. Vala, K. Postava, P. Provaznikova, and J. Pistora, "Mueller matrix ellipsometry of waveplates for control of their properties and alignment," J. Vac. Sci. Technol. B 38, 014006 (2020).   DOI
16 D. Vala, P. Kolejak, K. Postava, M. Kildemo, P. Provaznikova, and J. Pistora, "Effects of optical activity to Mueller matrix ellipsometry of composed waveplates," Opt. Express 29, 10434-10450 (2021).   DOI
17 J. A. Woollam Co., "Biased fast axis retarder system," US Patent 10606093 B1 (2020).
18 K. Y. Bang J. S. Kyung, H. K. Oh, O. K. Kim, and I. S. An, "Development and application of Mueller matrix ellipsometry," J. Semicond. Disp. Equip. Technol. 3, 31-34 (2004).
19 J. A. Woollam Co., "Multiple tipped Berek plate optical retarder elements for use in spectroscopic ellipsometer and polarimeter systems," US Patent 6118537A (2000).
20 A. Furchner, C. Kratz, W. Ogieglo, I. Pinnau, J. Rappich, and K. Hinrichs, "Ultrasensitive broadband infrared 4×4 Mueller-matrix ellipsometry for studies of depolarizing and anisotropic thin films," J. Vac. Sci. Technol. B 38, 014003 (2020).   DOI
21 S. Bian, C. Cui, and O. Arteaga, "Mueller matrix ellipsometer based on discrete-angle rotating Fresnel rhomb compensators," Appl. Opt. 60, 4964-4971 (2021).   DOI
22 A. Ruder, B. Wright, D. Peev, R. Feder, U. Kilic, M. Hilfiker, E. Schubert, C. M. Herzinger, and M. Schubert, "Mueller matrix ellipsometer using dual continuously rotating anisotropic mirrors," Opt. Lett. 45, 3541-3544 (2020).   DOI
23 A. Ruder, B. Wright, R. Feder, U. Kilic, M. Hilfiker, E. Schubert, C. M. Herzinger, and M. Schubert, "Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors," Opt. Express 29, 28704-28724 (2021).   DOI
24 T. Kaseberg, J. Grundmann, J. Dickmann, S. Kroker, and B. Bodermann, "Imaging Mueller matrix ellipsometry setup for optical nanoform metrology," EPJ Web of Conf. 238, 06006 (2020).   DOI
25 C. Chen, X. Chen, C. Wang, S. Sheng, L. Song, H. Gu, and S. Liu, "Imaging Mueller matrix ellipsometry with sub-micron resolution based on back focal plane scanning," Opt. Express 29, 32712-32727 (2021).   DOI
26 W. Du, S. Liu, C. Zhang, and X. Chen, "Optimal configuration for the dual rotating-compensator Mueller matrix ellipsometer," Proc. SPIE 8759, 875925 (2013).
27 E. Collett, Polarized Light: Fundamentals and Applications (Mercel Dekker, NY, 1993), Chapter 6.
28 W. Li, C. Zhang, H. Jiang, X. Chen, and S. Liu, "Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry," J. Opt. 18, 055701 (2016).   DOI
29 P. S. Hauge, "Mueller matrix ellipsometry with imperfect compensators," J. Opt. Soc. Am. 68, 1519-1528 (1978).   DOI
30 H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, "Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes," J. Opt. 18, 025702 (2016).   DOI
31 J. Narayan, S. Y. Kim, K. Vedam, and R. Manukonda, "Formation and nondestructive characterization of ion implanted silicon-on-insulator layers," Appl. Phys. Lett. 51, 343-345 (1987).   DOI
32 R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing, Amsterdam, 1987).
33 S. Y. Kim, Ellipsometry (Ajou University, Suwon, 2000).