DOI QR코드

DOI QR Code

Design of a Free-form Mueller Matrix Ellipsometer with Imperfect Compensators

불완전한 보정기를 적용한 자유형 뮬러행렬타원계의 설계

  • Received : 2021.12.07
  • Accepted : 2022.01.06
  • Published : 2022.04.25

Abstract

A free-form Mueller matrix ellipsometer (MME) based on independent control of the azimuthal angle of each polarizing element is introduced. The azimuthal angles of the polarizer and the matching compensator which generate the optimum Stokes vectors of an incident beam are investigated for the polarization state generator, where the spectral responses of the retardation angle and transmittance ratio of a nonideal compensator are taken into account. Similarly, the azimuthal angles of the analyzer and the corresponding compensator are investigated for the polarization-state detector, to unambiguously determine the Stokes vector of the outcoming beam from the sample, and explicit expressions for the Stokes elements are derived. Since the suggested technique enables one to utilize a nonideal quarter-wave plate as the compensator for an MME, it will contribute to the construction and application of a Mueller matrix spectroscopic ellipsometer (MMSE) operating over a wide spectral range from deep ultra-violet to near infrared.

각 편광소자의 방위각을 자유롭게 제어하는 자유형 구동방식에 기반한 뮬러행렬타원계(Mueller matrix ellipsometer, MME)를 제시한다. 보정기의 위상지연각 분산특성과 전기장 투과율비의 파장의존성을 고려하여 시료에 입사하는 빛의 편광상태를 최적화하기 위한 편광자의 방위각과 편광자측 보정기의 방위각 조합들을 제시한다. 시료로부터 출사하는 빛의 스톡스상수들을 빠르고 정확하게 측정할 수 있는 검광자의 방위각과 검광자측 보정기의 방위각 조합들, 그리고 출사하는 빛의 스톡스상수들을 구하는 수학적 표현들을 제시한다. 이 MME는 이상적이지 않은 4분파장 위상지연자를 적용할 수 있도록 보정기 선택의 폭을 넓혀주므로 깊은 자외선(deep ultraviolet)부터 근적외선(near infrared)에 이르는 매우 넓은 파장 대역에 걸쳐 작동하는 뮬러행렬 분광타원계(Mueller matrix spectroscopic ellipsometer, MMSE)의 제작과 활용을 용이하게 해 줄 것이다.

Keywords

Acknowledgement

본 연구는 한국산업기술진흥원(2020년 소재·부품·장비 양산성능평가지원사업, 과제번호: P0015756)의 지원으로 수행되었습니다.

References

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland Publishing, Amsterdam, 1987).
  2. S. Y. Kim, Ellipsometry (Ajou University, Suwon, 2000).
  3. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, Tokyo, Japan, 2007).
  4. S. Y. Kim and K. Vedam "Proper choice of the error function in modelling spectroellipsometric data," Appl. Opt. 25, 2013-2021 (1986). https://doi.org/10.1364/AO.25.002013
  5. Horiba, "Spectroscopic Ellipsometry," https://www.horiba.com/en_en/products/by-technique/material-characterization/ spectroscopic-ellipsometry/ (Accessed date: Dec. 24, 2021).
  6. K. Vedam, P. J. McMarr, and J. Narayan, "Nondestructive depth profiling by spectroscopic ellipsometry," Appl. Phys. Lett. 47, 339-341 (1985). https://doi.org/10.1063/1.96156
  7. J. Narayan, S. Y. Kim, K. Vedam, and R. Manukonda, "Formation and nondestructive characterization of ion implanted silicon-on-insulator layers," Appl. Phys. Lett. 51, 343-345 (1987). https://doi.org/10.1063/1.98435
  8. S. Y. Kim and K. Vedam, "Simultaneous determination of dispersion relation and depth profile of thorium fluoride thin film by spectroscopic ellipsometry," Thin Solid Films 166, 325-334 (1988). https://doi.org/10.1016/0040-6090(88)90394-X
  9. S. Liu, X. Chen, and C. Zhang, "Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology," Thin Solid Films 584, 176-185 (2015). https://doi.org/10.1016/j.tsf.2015.02.006
  10. X. Chen, S. Liu, H. Gu, and C. Zhang, "Formulation of error propagation and estimation in grating reconstruction by a dual-rotating compensator Mueller matrix polarimeter," Thin Solid Films 571, 653-659 (2014). https://doi.org/10.1016/j.tsf.2014.01.049
  11. P. S. Hauge, "Mueller matrix ellipsometry with imperfect compensators," J. Opt. Soc. Am. 68, 1519-1528 (1978). https://doi.org/10.1364/JOSA.68.001519
  12. R. M. A. Azzam, "Mueller-matrix ellipsometry: a review," Proc. SPIE 3121, 396-405 (1997).
  13. R. W. Collins and J. Koh, "Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films," J. Opt. Soc. Am. A 16, 1997-2006 (1999). https://doi.org/10.1364/JOSAA.16.001997
  14. J. Li, B. Ramanujam, and R. W. Collins, "Dual rotating-compensator ellipsometer: theory and simulations," Thin Solid Films 519, 2725-2729 (2011). https://doi.org/10.1016/j.tsf.2010.11.075
  15. C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, "Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle," Thin Solid Films 455-456, 14-23 (2004). https://doi.org/10.1016/j.tsf.2003.11.191
  16. K. Y. Bang J. S. Kyung, H. K. Oh, O. K. Kim, and I. S. An, "Development and application of Mueller matrix ellipsometry," J. Semicond. Disp. Equip. Technol. 3, 31-34 (2004).
  17. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and M. Gioti, "Mueller matrix spectroscopic ellipsometry: formulation and application," Thin Solid Films 455-456, 43-49 (2004). https://doi.org/10.1016/j.tsf.2003.11.197
  18. S. Zhang, H. Jiang, H. Gu, X. Chen, and S. Liu, "High-speed Mueller matrix ellipsometer with microsecond temporal resolution," Opt. Express 28, 10873-10887 (2020). https://doi.org/10.1364/oe.389825
  19. K. S. Reddy, V. M. Kumar, S. Chandralingam, P. R. Rao, and P. V. K. Rao, "Optical signature of wood sample-Mueller matrix imaging polarimetry," ARPN J. Eng. Appl. Sci. 5, 34-38 (2010).
  20. W. Li, C. Zhang, H. Jiang, X. Chen, and S. Liu, "Depolarization artifacts in dual rotating-compensator Mueller matrix ellipsometry," J. Opt. 18, 055701 (2016). https://doi.org/10.1088/2040-8986/18/5/055701
  21. P. Kolejak, D. Vala, K. Postava, P. Provaznikova, and J. Pistora, "Mueller matrix ellipsometry of waveplates for control of their properties and alignment," J. Vac. Sci. Technol. B 38, 014006 (2020). https://doi.org/10.1116/1.5129615
  22. D. Vala, P. Kolejak, K. Postava, M. Kildemo, P. Provaznikova, and J. Pistora, "Effects of optical activity to Mueller matrix ellipsometry of composed waveplates," Opt. Express 29, 10434-10450 (2021). https://doi.org/10.1364/OE.418186
  23. H. Gu, X. Chen, H. Jiang, C. Zhang, and S. Liu, "Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes," J. Opt. 18, 025702 (2016). https://doi.org/10.1088/2040-8986/18/2/025702
  24. J. A. Woollam Co., "Biased fast axis retarder system," US Patent 10606093 B1 (2020).
  25. J. A. Woollam Co., "Multiple tipped Berek plate optical retarder elements for use in spectroscopic ellipsometer and polarimeter systems," US Patent 6118537A (2000).
  26. A. Furchner, C. Kratz, W. Ogieglo, I. Pinnau, J. Rappich, and K. Hinrichs, "Ultrasensitive broadband infrared 4×4 Mueller-matrix ellipsometry for studies of depolarizing and anisotropic thin films," J. Vac. Sci. Technol. B 38, 014003 (2020). https://doi.org/10.1116/1.5129800
  27. S. Bian, C. Cui, and O. Arteaga, "Mueller matrix ellipsometer based on discrete-angle rotating Fresnel rhomb compensators," Appl. Opt. 60, 4964-4971 (2021). https://doi.org/10.1364/AO.425899
  28. A. Ruder, B. Wright, D. Peev, R. Feder, U. Kilic, M. Hilfiker, E. Schubert, C. M. Herzinger, and M. Schubert, "Mueller matrix ellipsometer using dual continuously rotating anisotropic mirrors," Opt. Lett. 45, 3541-3544 (2020). https://doi.org/10.1364/ol.398060
  29. A. Ruder, B. Wright, R. Feder, U. Kilic, M. Hilfiker, E. Schubert, C. M. Herzinger, and M. Schubert, "Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors," Opt. Express 29, 28704-28724 (2021). https://doi.org/10.1364/OE.435972
  30. T. Kaseberg, J. Grundmann, J. Dickmann, S. Kroker, and B. Bodermann, "Imaging Mueller matrix ellipsometry setup for optical nanoform metrology," EPJ Web of Conf. 238, 06006 (2020). https://doi.org/10.1051/epjconf/202023806006
  31. C. Chen, X. Chen, C. Wang, S. Sheng, L. Song, H. Gu, and S. Liu, "Imaging Mueller matrix ellipsometry with sub-micron resolution based on back focal plane scanning," Opt. Express 29, 32712-32727 (2021). https://doi.org/10.1364/OE.439941
  32. W. Du, S. Liu, C. Zhang, and X. Chen, "Optimal configuration for the dual rotating-compensator Mueller matrix ellipsometer," Proc. SPIE 8759, 875925 (2013).
  33. E. Collett, Polarized Light: Fundamentals and Applications (Mercel Dekker, NY, 1993), Chapter 6.