• Title/Summary/Keyword: 타원곡선 암호알고리즘

Search Result 108, Processing Time 0.034 seconds

Design and Implementation of effective ECC Encryption Algorithm for Voice Data (음성 데이터 보안을 위한 효율적인 ECC 암호 알고리즘 설계 및 구현)

  • Kim, Hyun-Soo;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2374-2380
    • /
    • 2011
  • Many people is preferred to mVoIP which offers call telephone-quality and convenient UI as well as free of charge. On the other hand, security of mVoIP is becoming an issue as it using Internet network may have danger about wiretapping. Although traditionally encryption algorithm of symmetric key for security of voice data has been used, ECC algorithm of public key type has been preferring for encryption because it is stronger in part the strength of encryption than others. However, the existing way is restricted by lots of operations in poor mobile environment. Thus this paper proposes the efficiency of resource consumption way by reducing cryptographic operations.

A Flexible Approach for Efficient Elliptic Curve Multi-Scalar Multiplication on Resource-constrained Devices (자원이 제약된 장치에서 효율적인 타원곡선 다중 상수배의 구현을 위한 유연한 접근)

  • Seo, Seog-Chung;Kim, Hyung-Chan;Ramakrishna, R.S.
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.95-109
    • /
    • 2006
  • Elliptic Curve Cryptosystem (ECC) is suitable for resource-constrained devices such as smartcards, and sensor motes because of its short key size. This paper presents an efficient multi-scalar multiplication algorithm which is the main component of the verification procedure in Elliptic Curve Digital Signature Algorithm (ECDSA). The proposed algorithm can make use of a precomputed table of variable size and provides an optimal efficiency for that precomputed table. Furthermore, the given scalar is receded on-the-fly so that it can be merged with the main multiplication procedure. This can achieve more savings on memory than other receding algorithms. Through experiments, we have found that the optimal sizes of precomputed tables are 7 and 15 when uP+vQ is computed for u, v of 163 bits and 233 bits integers. This is shown by comparing the computation time taken by the proposed algorithm and other existing algorithms.

Development of High Speed Scalar Product Operation System for ECC Public Key (타원곡선 공개키 생성을 위한 고속 스칼라곱 연산 시스템 구현)

  • Kim, Kap-Yol;Lee, Chul-Soo;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.394-402
    • /
    • 2010
  • At a recent, enterprises based on online-service are established because of rapid growth of information network. These enterprises collect personal information and do customer management. If customers use a paid service, company send billing information to customer and customer pay it. Such circulation and management of information is big issue but most companies don't care of information security. Actually, personal information that was managed by largest internal open-market was exposed. For safe customer information management, this paper proposes the method that decrease load of RSA cryptography algorithm that is commonly used for preventing from illegal attack or hacking. The method for decreasing load was designed by Binary NAF Method and it can operates modular Exponentiation rapidly. We implemented modular Exponentiation algorithm using existing Binary Method and Windows Method and compared and evaluated it.

XML Document Encrypt Implementation using Elliptic Curve Cryptosystem (타원곡선 알고리즘을 이용한 XML 문서 암호 구현)

  • Ko, Hoon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • As the use of the computer and networks generalized, the various tasks which are requested secrets can be processed such os the banking transaction. And because of increasing of data exchange, Internet, and mobile networks, the method which is not connected only but also used with many users has been changed. Especially because of the structural problem of the Internet, a lot of information is leaked out when we use the Internet banking. If we check the Internet banking by using an existing cypher method which is either simple of slow, a credit card number, an account number or password will be leaked out. Because the security of information doesn't meet our expectation, we need more powerful cryptography. But, the wasted space-time which is required shouldn,t be ignored when the whole transferred data are encrypted. So, by using both the Elliptic Curve algorithm which is based on mobile networks and the partial encryption of the DTD of XML in this essay, we will implement more faster cypher method of the partial XML.

  • PDF

A Hardware Implementation of the Underlying Field Arithmetic Processor based on Optimized Unit Operation Components for Elliptic Curve Cryptosystems (타원곡선을 암호시스템에 사용되는 최적단위 연산항을 기반으로 한 기저체 연산기의 하드웨어 구현)

  • Jo, Seong-Je;Kwon, Yong-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2002
  • In recent years, the security of hardware and software systems is one of the most essential factor of our safe network community. As elliptic Curve Cryptosystems proposed by N. Koblitz and V. Miller independently in 1985, require fewer bits for the same security as the existing cryptosystems, for example RSA, there is a net reduction in cost size, and time. In this thesis, we propose an efficient hardware architecture of underlying field arithmetic processor for Elliptic Curve Cryptosystems, and a very useful method for implementing the architecture, especially multiplicative inverse operator over GF$GF (2^m)$ onto FPGA and futhermore VLSI, where the method is based on optimized unit operation components. We optimize the arithmetic processor for speed so that it has a resonable number of gates to implement. The proposed architecture could be applied to any finite field $F_{2m}$. According to the simulation result, though the number of gates are increased by a factor of 8.8, the multiplication speed We optimize the arithmetic processor for speed so that it has a resonable number of gates to implement. The proposed architecture could be applied to any finite field $F_{2m}$. According to the simulation result, though the number of gates are increased by a factor of 8.8, the multiplication speed and inversion speed has been improved 150 times, 480 times respectively compared with the thesis presented by Sarwono Sutikno et al. [7]. The designed underlying arithmetic processor can be also applied for implementing other crypto-processor and various finite field applications.

양자내성 블록체인에 관한 기술적 동향

  • Kwon, HyeokDong;Sim, MinJoo;Lim, SeJin;Kang, YeaJun;Seo, Hwajeong
    • Review of KIISC
    • /
    • v.32 no.1
    • /
    • pp.7-17
    • /
    • 2022
  • 양자컴퓨터 개발이 가속화됨에 따라 기존 암호 기술이 기반하고 있는 수학적 난제가 실시간으로 해결될 수 있다는 문제점에 현실화되고 있다. RSA와 타원곡선 기반의 공개키 암호와 해시함수를 활용하여 만든 블록체인 역시 양자컴퓨터에 의해 해킹 가능성이 높아지고 있다. 블록체인 상에서 데이터 위·변조를 어렵게하기 위한 장치로 사용한 암호가 양자컴퓨터상에서 동작하는 양자알고리즘에 의해 해킹된다면 블록체인으로 보호되고 있는 데이터들의 안전성은 보장받을 수 없다. 이를 해결하기 위한 하나의 방안으로 양자알고리즘에 의해서도 해킹되지 않는 양자내성을 가진 블록체인이 제안되었다. 이와 더불어 블록체인이 기존에 가지고 있던 정보에 대한 안전한 이전을 성립하기 위한 기술에 대한 연구도 활발히 진행되고 있다. 본 고에서는 양자 내성 블록체인과 이를 구현하기 위한 기술적 동향에 대해서 확인해 보도록 한다.

Efficient Implementation of Optimal Extension Fields Using Parallel Computation (병렬 연산을 이용한 최적 확장체의 효율적 구현)

  • 이문규;박근수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.269-271
    • /
    • 2003
  • 본 논문에서는 타원 곡선 암호의 성능을 향상시키기 위한 효율적인 최적 확장체 연산 알고리즘을 제안한다. 제안하는 알고리즘은 CPU에서 제공되는 정수 곱셈 명령 1회 실행에 두 개의 하위체 연산을 병렬적으로 수행하도록 함으로써 최적 확장체에서의 곱셈, 제곱, 역원 연산의 속도를 향상시킨다.

  • PDF

A Method for Scalar Multiplication on Elliptic Curves against Differential Power Analysis using Efficient Key-Randomization (효율적인 키-난수화를 사용한 차분 전력 분석 공격에 대응하는 타원곡선 위의 스칼라 곱셈 방법)

  • Jung, Seok Won
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.356-363
    • /
    • 2020
  • As a becoming era of Internet-of-Things, various devices are connected via wire or wirless networks. Although every day life is more convenient, security problems are also increasing such as privacy, information leak, denial of services. Since ECC, a kind of public key cryptosystem, has a smaller key size compared to RSA, it is widely used for environmentally constrained devices. The key of ECC in constrained devices can be exposed to power analysis attacks during scalar multiplication operation. In this paper, a key-randomization method is suggested for scalar multiplication on SECG parameters. It is against differential power analysis and has operational efficiency. In order to increase of operational efficiency, the proposed method uses the property 2lP=∓cP where the constant c is small compared to the order n of SECG parameters and n=2l±c. The number of operation for the Coron's key-randomization scalar multiplication algorithm is 21, but the number of operation for the proposed method in this paper is (3/2)l. It has efficiency about 25% compared to the Coron's method using full random numbers.

End-to-end MQTT security protocol using elliptic curve cryptography algorithm (타원곡선암호 알고리즘을 이용한 종단간 MQTT 보안 프로토콜)

  • Min, Jung-Hwan;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Internet of Things (IoT) is proliferating to provide more intelligent services by interconnecting various Internet devices, and TCP based MQTT is being used as a standard communication protocol of the IoT. Although it is recommended to use TLS/SSL security protocol for TCP with MQTT-based IoT devices, encryption and decryption performance degenerates when applied to low-specification / low-capacity IoT devices. In this paper, we propose an end-to-end message security protocol using elliptic curve cryptosystem, a lightweight encryption algorithm, which improves performance on both sides of the client and server, based on the simulation of TLS/SSL and the proposed protocol.