• Title/Summary/Keyword: 클록 발생기

Search Result 45, Processing Time 0.019 seconds

A 12b 100MS/s 1V 24mW 0.13um CMOS ADC for Low-Power Mobile Applications (저전력 모바일 응용을 위한 12비트 100MS/s 1V 24mW 0.13um CMOS A/D 변환기)

  • Park, Seung-Jae;Koo, Byeong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.56-63
    • /
    • 2010
  • This work proposes a 12b 100MS/s 0.13um CMOS pipeline ADC for battery-powered mobile video applications such as DVB-Handheld (DVB-H), DVB-Terrestrial (DVB-T), Satellite DMB (SDMB), and Terrestrial DMB (TDMB) requiring high resolution, low power, and small size at high speed. The proposed ADC employs a three-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. A single shared and switched op-amp for two MDACs removes a memory effect and a switching time delay, resulting in a fast signal settling. A two-step reference selection scheme for the last-stage 6b FLASH ADC reduces power consumption and chip area by 50%. The prototype ADC in a 0.13um 1P7M CMOS technology demonstrates a measured DNL and INL within 0.40LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 60.0dB and a maximum SFDR of 72.4dB at 100MS/s, respectively. The ADC with an active die area of 0.92 $mm^2$ consumes 24mW at 1.0V and 100MS/s. The FOM, power/($f_s{\times}2^{ENOB}$), of 0.29pJ/conv. is the lowest of ever reported 12b 100MS/s ADCs.

The Hardware Design of Effective Deblocking Filter for HEVC Encoder (HEVC 부호기를 위한 효율적인 디블록킹 하드웨어 설계)

  • Park, Jae-Ha;Park, Seung-yong;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.755-758
    • /
    • 2014
  • In this paper, we propose effective Deblocking Filter hardware architecture for High Efficiency Video Coding encoder. we propose Deblocking Filter hardware architecture with less processing time, filter ordering for low area design, effective memory architecture and four-pipeline for a high performance HEVC(High Efficiency Video Coding) encoder. Proposed filter ordering can be used to reduce delay according to preprocessing. It can be used for realtime single-port SRAM read and write. it can be used in parallel processing by using two filters. Using 10 memory is effective for solving the hazard caused by a single-port SRAM. Also the proposed filter can be used in low-voltage design by using clock gating architecture in 4-pipeline. The proposed Deblocking Filter encoder architecture is designed by Verilog HDL, and implemented by 100k logic gates in TSMC $0.18{\mu}m$ process. At 150MHz, the proposed Deblocking Filter encoder can support 4K Ultra HD video encoding at 30fps, and can be operated at a maximum speed of 200MHz.

  • PDF

A 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS ADC for Digital Multimedia Broadcasting applications (DMB 응용을 위한 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D 변환기)

  • Cho, Young-Jae;Kim, Yong-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.37-47
    • /
    • 2006
  • This work proposes a 10b 25MS/s $0.8mm^2$ 4.8mW 0.13um CMOS A/D Converter (ADC) for high-performance wireless communication systems such as DVB, DAB and DMB simultaneously requiring low voltage, low power, and small area. A two-stage pipeline architecture minimizes the overall chip area and power dissipation of the proposed ADC at the target resolution and sampling rate while switched-bias power reduction techniques reduce the power consumption of analog amplifiers. A low-power sample-and-hold amplifier maintains 10b resolution for input frequencies up to 60MHz based on a single-stage amplifier and nominal CMOS sampling switches using low threshold-voltage transistors. A signal insensitive 3-D fully symmetric layout reduces the capacitor and device mismatch of a multiplying D/A converter while low-noise reference currents and voltages are implemented on chip with optional off-chip voltage references. The employed down-sampling clock signal selects the sampling rate of 25MS/s or 10MS/s with a reduced power depending on applications. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.42LSB and 0.91LSB and shows a maximum SNDR and SFDR of 56dB and 65dB at all sampling frequencies up to 2SMS/s, respectively. The ADC with an active die area if $0.8mm^2$ consumes 4.8mW at 25MS/s and 2.4mW at 10MS/s at a 1.2V supply.

A 0.31pJ/conv-step 13b 100MS/s 0.13um CMOS ADC for 3G Communication Systems (3G 통신 시스템 응용을 위한 0.31pJ/conv-step의 13비트 100MS/s 0.13um CMOS A/D 변환기)

  • Lee, Dong-Suk;Lee, Myung-Hwan;Kwon, Yi-Gi;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.75-85
    • /
    • 2009
  • This work proposes a 13b 100MS/s 0.13um CMOS ADC for 3G communication systems such as two-carrier W-CDMA applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs a four-step pipeline architecture to optimize power consumption and chip area at the target resolution and sampling rate. Area-efficient high-speed high-resolution gate-bootstrapping circuits are implemented at the sampling switches of the input SHA to maintain signal linearity over the Nyquist rate even at a 1.0V supply operation. The cascode compensation technique on a low-impedance path implemented in the two-stage amplifiers of the SHA and MDAC simultaneously achieves the required operation speed and phase margin with more reduced power consumption than the Miller compensation technique. Low-glitch dynamic latches in sub-ranging flash ADCs reduce kickback-noise referred to the differential input stage of the comparator by isolating the input stage from output nodes to improve system accuracy. The proposed low-noise current and voltage references based on triple negative T.C. circuits are employed on chip with optional off-chip reference voltages. The prototype ADC in a 0.13um 1P8M CMOS technology demonstrates the measured DNL and INL within 0.70LSB and 1.79LSB, respectively. The ADC shows a maximum SNDR of 64.5dB and a maximum SFDR of 78.0dB at 100MS/s, respectively. The ABC with an active die area of $1.22mm^2$ consumes 42.0mW at 100MS/s and a 1.2V supply, corresponding to a FOM of 0.31pJ/conv-step.

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.