• Title/Summary/Keyword: 클라우드 서버 IoT

Search Result 62, Processing Time 0.021 seconds

Study of Load Balancing Technique Based on Step-By-Step Weight Considering Server Status in SDN Environment (SDN 환경에서 서버 상태를 고려한 단계적 가중치 기반의 부하 분산 기법 연구)

  • Jae-Young Lee;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1087-1094
    • /
    • 2023
  • Due to the development of technologies, such as big data, cloud, IoT, and AI, The high data throughput is required, and the importance of network flexibility and scalability is increasing. However, existing network systems are dependent on vendors and equipment, and thus have limitations in meeting the foregoing needs. Accordingly, SDN technology that can configure a software-centered flexible network is attracting attention. In particular, a load balancing method based on SDN can efficiently process massive traffic and optimize network performance. In the existing load balancing studies in SDN environment have limitation in that unnecessary traffic occurs between servers and controllers or performing load balancing only after the server reaches an overload state. In order to solve this problem, this paper proposes a method that minimizes unnecessary traffic and appropriate load balancing can be performed before the server becomes overloaded through a method of assigning weights to servers in stages according to server load.

A Study on the Cloud Service Model of CaaS Based on the Object Identification, ePosition, with a Structured Form of Texts (문자열로 구조화된 사물식별아이디 이포지션(ePosition) 기반의 클라우드 CaaS(Contents as a Service) 서비스 모델에 관한 연구)

  • Lee, Sang-Zee;Kang, Myung-Su;Cho, Won-Hee
    • Information Systems Review
    • /
    • v.15 no.3
    • /
    • pp.129-139
    • /
    • 2013
  • The Internet of Things (or IoT for short) which refers to uniquely identifiable objects and their virtual representations in an Internet-like structure is to be reality today. The amount of data on IoT is expected to increase abruptly and there are several key issues like usefulness interoperability between multiple distributes systems, services and databases. In this paper a methodology is proposed to realize a recently developed cloud service model, Contents as a Service (CaaS), which is contents delivery model referred to as 'on-demand contents'. In the proposed method, the global object identification, ePosition, comprising the structured form of two sorts of text strings with a separation symbol like # is applied to identify a specific content and registered with the content at the same server. It is easy-to-realize and effective to solve the interoperability problem systematically and logically. Some APIs for the proposed CaaS service are to be converged to provide some upgraded cloud service model such as 'CaaS supported SaaS' and 'CaaS supported PaaS'.

  • PDF

A Study on RFID System Based on Cloud (클라우드 기반 RFID 시스템에 관한 연구)

  • Lee, Cheol-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1145-1150
    • /
    • 2020
  • After the Davos Forum, the recent 4th Industrial Revolution has become an area of interest to countries around the world. Among the technologies of the 4th industrial revolution, the ubiquitous computing environment requires a convergence environment of various devices, networks, and software technologies, and the RFID technology that identifies objects among the IoT technology fields is applied to all industries and has a competitive edge. Systems to which RFID technology is applied are being used in various industrial fields, especially! It is efficiently used for accurate inventory management and SCM management in the field of distribution and logistics. If the RFID system is built in a cloud-based environment, it will be possible to secure reliability in distribution management in consideration of an effective logistics management system and economic feasibility. This study is a study on the RFID system in a cloud computing environment to reduce the cost of operating or maintaining an application server to improve the economy and reliability.

Development of Software-Defined Perimeter-based Access Control System for Security of Cloud and IoT System (Cloud 및 IoT 시스템의 보안을 위한 소프트웨어 정의 경계기반의 접근제어시스템 개발)

  • Park, Seung-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Recently, as the introduction of cloud, mobile, and IoT has become active, there is a growing need for technology development that can supplement the limitations of traditional security solutions based on fixed perimeters such as firewalls and Network Access Control (NAC). In response to this, SDP (Software Defined Perimeter) has recently emerged as a new base technology. Unlike existing security technologies, SDP can sets security boundaries (install Gateway S/W) regardless of the location of the protected resources (servers, IoT gateways, etc.) and neutralize most of the network-based hacking attacks that are becoming increasingly sofiscated. In particular, SDP is regarded as a security technology suitable for the cloud and IoT fields. In this study, a new access control system was proposed by combining SDP and hash tree-based large-scale data high-speed signature technology. Through the process authentication function using large-scale data high-speed signature technology, it prevents the threat of unknown malware intruding into the endpoint in advance, and implements a kernel-level security technology that makes it impossible for user-level attacks during the backup and recovery of major data. As a result, endpoint security, which is a weak part of SDP, has been strengthened. The proposed system was developed as a prototype, and the performance test was completed through a test of an authorized testing agency (TTA V&V Test). The SDP-based access control solution is a technology with high potential that can be used in smart car security.

Design and Implementation of High-Speed Software Cryptographic Modules Using GPU (GPU를 활용한 고속 소프트웨어 암호모듈 설계 및 구현)

  • Song, JinGyo;An, SangWoo;Seo, Seog Chung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1279-1289
    • /
    • 2020
  • To securely protect users' sensitive information and national secrets, the importance of cryptographic modules has been emphasized. Currently, many companies and national organizations are actively using cryptographic modules. In Korea, To ensure the security of these cryptographic modules, the cryptographic module has been verified through the Korea Certificate Module Validation Program(KCMVP). Most of the domestic cryptographic modules are CPU-based software (S/W). However, CPU-based cryptographic modules are difficult to use in servers that need to process large amounts of data. In this paper, we propose an S/W cryptographic module that provides a high-speed operation using GPU. We describe the configuration and operation of the S/W cryptographic module using GPU and present the changes in the cryptographic module security requirements by using GPU. In addition, we present the performance improvement compared to the existing CPU S/W cryptographic module. The results of this paper can be used for cryptographic modules that provide cryptography in servers that manage IoT (Internet of Things) or provide cloud computing.

Development of LoRa IoT Automatic Meter Reading and Meter Data Management System for Smart Water Grid (스마트워터그리드를 위한 LoRa IoT 원격검침 및 계량데이터 시스템 개발)

  • Park, Jeong-won;Park, Jae-sam
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • In this paper, water meter AMR(automatic meter reading), one of the core technologies of smart water grid, using LoRa IoT network is studied. The main content of the research is to develop the network system and show the test results that one PC server receives the readings of water meters from multiple households through LoRa communication and stores them in the database, and at the same time sends the data to the web server database through internet. The system also allows users to monitor the meter readings using their smartphones. The hardware and firmware of the main board of the digital water meter are developed. For a PC server program, MDMS(meter data management system) is developed using Visual C#. The app program running on the user's smartphone is also developed using Android Studio. By connecting each developed parts, the total network system is mounted on a flow test bench in the laboratory and tested. For the fields test, 5 places around the university are selected and the transmission distances are tested. The test result show that the developed system can be applied into the real field. The developed system can be expanded to various social safety nets such as monitoring the living alone or elderly with dementia.

Distributing Board Monitoring System based on Internet of Things (사물인터넷 기반 수배전반 상태 모니터링 시스템)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.200-206
    • /
    • 2016
  • It is necessary to develop a real-time monitoring system for electric facilities, operating and managing system for the accident prevention of electrical demand facilities anytime, anywhere. In this paper, we propose the implementation of distributing board monitoring system based on Internet of Things(IoT). The proposed system is installed in existing distributing board that it can transmit status information of distributing board and control information through the cloud server and the wireless local area network. The distributing board monitoring system can monitor and control the condition of distributing board by system administrator. The results show that the margin of error was ${\pm}5%$ in performance evaluation.

Device Virtualization Framework for Smart Home Cloud Service (스마트홈 클라우드 서비스를 위한 디바이스 가상화 프레임워크)

  • Kim, Kyungwon;Park, Jongbin;Kum, Seungwoo;Jung, Jongjin;Yang, Chang-Mo;Lim, Taebeom
    • Telecommunications review
    • /
    • v.24 no.5
    • /
    • pp.677-691
    • /
    • 2014
  • Connectivity is becoming more important keywords recently. For example, many devices are going to be connected to the internet. It is usually called as the IoT(internet of things). Many IoT devices can be evolved as a part of giant system of the world wide web. It is a great opportunity for us, because many new services can have emerged through this paradigm. In this paper, we propose a device virtualization framework for smart home service. The proposed framework connects the many home appliances devices and the internet using a dynamic protocol conversion. After our protocol conversion for device virtualization, our framework provides a RESTful API to access the resources of device through the internet. Therefore, the proposed framework can provide a variety of services, so it also can be developed into the ecosystem for smart home service. The current framework version only supports UPnP enabled devices of the home, but it can easily be extended to many other home middleware solutions. To verify the feasibility of the framework, we have implemented several service scenarios.

Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain (스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계)

  • Hwang, Zi-on
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2167-2175
    • /
    • 2017
  • In recent years, an IoT is dramatically developing according to the enhancement of AI, the increase of connected devices, and the high-performance cloud systems. Huge data produced by many devices and sensors is expanding the scope of services, such as an intelligent diagnostics, a recommendation service, as well as a smart monitoring service. The studies of edge computing are limited as a role of small server system with high quality HW resources. However, there are specialized requirements in a smart factory domain needed edge computing. The edges are needed to pre-process containing tiny filtering, pre-formatting, as well as merging of group contexts and manage the regional rules. So, in this paper, we extract the features and requirements in a scope of efficiency and robustness. Our edge offers to decrease a network resource consumption and update rules and learning models. Moreover, we propose architecture of edge computing based on learning factors sharing with a cloud system in a smart factory.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF