• Title/Summary/Keyword: 크리프

Search Result 760, Processing Time 0.028 seconds

State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy (A17075합금의 고온 크리프 활성화에너지의 상태의존성)

  • 조용이;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The activation energy for high temperature creep is associated with stresses, temperatures, straians And the creep strain appears to be a function of a temperature, compensated time, namely $te^{-}$.DELTA.H/RT/, and the stress. In fact this functional relation appears to be isomorphic to material structure by x-ray analyses. Applying this functional relation, the dependance of activation energy for A17075 creep was investigated. The activation energy for creep is insensitive to stress, temperature, structure, and strain. And phenomenological model agrees with experimental creep data.

Creep Life Prediction of SUS 316L Stainless Steel (STS 316L 스테인리스강의 크리프 수명예측)

  • Yoon, Jong-Ho;Hwang, Kyung-Choong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2006
  • Stainless steel has widely been used in various industrial fields because it has high corrosion resistance. But, we have little design data about the creep life prediction of SUS316L stainless steel. Therefore, in this study, a series of creep tests and study on them under 16 constant stress and temperature combined conditions have been performed to get the creep design data and life prediction of SUS316L stainless steels and we have gotten the following results. First, the stress exponents decrease as the test temperatures increase. Secondly, the creep activation energy gradually decreases as the stresses become bigger. Thirdly, the constant of Larson-Miller parameters on this alloy is estimated about 10. And last, the creep rupture fractographs show the intergranular ductile fracture with many dimples.

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF

Friction Welding of Dissimilar Hot Die Punch materials and Its Creep Life Prediction(II)-Creep Life Prediction by ISM (열간 금형재의 이종재 마찰용접과 크리프 수명예측 (II) -크리프 수명예측)

  • 박일동;공유식;오세규;전태언
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 2001
  • It was confirmed that the life predictive equation by LMP and LMP-ISM are effective only up to 10$^2$hours and can not be used for long times of $10^3~10^5$ hours, but that by ISM can be used for long times creep life prediction with more reliability. The predictive creep life equation of ISM has better reliability than those by LMP and LMP-ISM, and its realizably is getting better for long time creep prediction($10^3~10^5$ h).

  • PDF

Standard Error Analysis of Creep-Life Prediction Parameters of Type 316LN Stainless Steels (Type 316LN 강의 크리프 수명예측 파라메타의 표준오차 분석)

  • Kim, Woo-Gon;Yoon, Song-Nam;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.19-24
    • /
    • 2004
  • A number of creep data were collected and filed for type 316LN stainless steels through literature survey and experimental data produced in KAERI. Using these data, polynomial equations for predicting creep life were obtained for Larson Miller (L-M), Qrr-Sherby-Dorn (O-S-D) and Manson-Haferd (M-H) parametric methods. In order to find out the suitability for them, the relative standard error (RSE) and standard error of estimate (SEE) values were obtained by statistical process of creep data. The O-S-D parameter showed better fitting to creep-rupture data than the L-M or the M-H parameters, and the three parametric methods did not generate the large difference in the SEE and the RSE values.

  • PDF

Creep Life Prediction of Type 316LN Steel Using Minimum Commitment Method (최소구속법을 이용한 Type 316LN 강의 크리프 수명 예측)

  • Kim W.G.;Yoon S.N.;Ryu W.S.;Yi W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • A minimum commitment method (MCM) was applied to predict the creep rupture life of type 316LN SS. For this purpose, a number of the creep rupture data for the type 316LN SS were collected through literature survey and experimental data of KAERl, Using the short-term creep rupture data under 2000 hr, the long-term creep rupture life above $10^5$ hour was predicted by means of the MCM. An optimum value of A, P and G function, used in the MCM equation, was determined respectively, and the creep rupture life with the A values in different temperatures was compared with the experimental data and the predicted curves.

  • PDF

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Time-dependent Analysis of Cracked Reinforced Concrete Sections with Biaxial Bending (2축휨을 고려한 철근콘크리트 균열단면의 장기거동 해석)

  • Yang, Joo Kyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.243-247
    • /
    • 2008
  • An analytical approach to calculate time-dependent stresses and strains in initially cracked reinforced concrete section with biaxial bending was proposed. The method utilized the aging coefficient approach of Bazant and the linear creep theory. The position of neutral axis and strain and stress distributions of cracked section after creep and shrinkage were determined from the requirements of strain compatibility and equilibrium of a section. With this proposed algorithm, examples were given for rectangular section and a comparative analysis for stress and strain was also made.

Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel (Grade 91 강의 고온 균열진전 실험 결과와 설계 물성치의 비교)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCC-MRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep (건조수축과 크리프에 의한 합성형 거더의 재령종속적 거동)

  • Ahn, Sung-Soo;Sung, Won-Jin;Kang, Byeong-Su;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.109-116
    • /
    • 2006
  • An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.